Extended formulations and a connection to communication protocols

Manuel Aprile (ULB)
Yuri Faenza (Columbia University)

声
Columbia
UNIVERSITY

The minimum weight spanning tree problem

https://pynash.org/2013/03/05/treeification/

The minimum weight spanning tree problem

https://pynash.org/2013/03/05/treeification/

The minimum weight spanning tree problem

Goal: connect all the vertices in the graph G using edges of minimum total weight. The desired subgraph is a spanning tree of G.

Combinatorial algorithms

For problems like finding the minimum weight spanning tree, there are fast "ad hoc" algorithms.

However, such algorithms can rarely be adapted when extra constraints arise (e.g. "find the spanning tree of minimum weight such that node A and B are at distance at most 5 ").

In practice, we need more flexible algorithms...

Linear programming approach

Idea: associate to each solution of our problem to a point in \mathbb{R}^{d} and describe the convex hull with a linear system.

$$
\text { spanning tree } T \quad \longrightarrow \quad \chi_{e}^{T}=\left\{\begin{array}{cc}
1 & \text { if } e \in T \\
0 & \text { otherwise }
\end{array}\right.
$$

$\operatorname{STP}(G)=\operatorname{conv}\left\{\chi^{T}: T\right.$ is a spanning tree of $\left.G\right\}=\left\{x \in \mathbb{R}^{E}: A x \leq b\right\}$

Then the problem can be formulated as a linear program (LP):

$$
\begin{array}{cc}
\max & \langle c, x\rangle \\
\text { subject to } & A x \leqslant b, \quad x \in \mathbb{R}^{d}
\end{array}
$$

Spanning tree polytope

Graph $G=(V, E)$

$$
\begin{aligned}
\operatorname{STP}(G)=\{ & x \in \mathbb{R}^{E}: \\
& x(E(U)) \leq|U|-1 \\
& x \geq 0 \\
& x(E)=|V|-1
\end{aligned}
$$

Problem: our description $A x \leq b$ has exponential size!

Extended formulations

Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polytope.

Definition

$Q=\left\{A^{\prime} x+C y \leq b^{\prime}\right\}$ is an extended formulation for P if there exists a projection $\pi: \mathbb{R}^{d+k} \rightarrow \mathbb{R}^{d}$ such that $\pi(Q)=P$.
Q has higher dimension but less facets!

$$
\begin{aligned}
P & =\pi(Q) \\
& =\left\{x \in \mathbb{R}^{d} \mid \exists y \in \mathbb{R}^{k}:(x, y) \in Q\right\} \\
& =\left\{x \in \mathbb{R}^{d} \mid \exists y \in \mathbb{R}^{k}: A x+C y \leqslant b\right\}
\end{aligned}
$$

Wong's extended formulation

Graph $G=(V, E)$

- Bidirect the edges, fix root r
- Spanning trees $=r$-arborescences
- r-arborescence $=$ union of r - v flow for each $v \in V \backslash\{r\}$.

Wong's extended formulation

Graph $G=(V, E)$

- Bidirect the edges, fix root r
- Spanning trees $=r$-arborescences
- r-arborescence $=$ union of r - v flow for each $v \in V \backslash\{r\}$.

Wong's extended formulation

$$
\begin{array}{rlr}
\operatorname{STP}(G)=\{ & x \in \mathbb{R}^{E} \mid \exists c \in \mathbb{R}^{\vec{E}}, \phi^{v} \in \mathbb{R}^{\vec{E}} \forall v \in V-r: & \\
& \phi^{v}\left(\delta^{\text {out }}(r)\right)-\phi^{v}\left(\delta^{\text {in }}(r)\right)=1 & \forall v \in V-r \\
& \phi^{v}\left(\delta^{\text {out }}(u)\right)-\phi^{v}\left(\delta^{\text {in }}(u)\right)=0 & \forall u \in V-r-v \\
& \mathbf{0} \leq \phi^{v} \leq c & \forall v \in V-r \\
& x_{u v}=c_{(u, v)}+c_{(v, u)} & \forall u v \in E \\
& x(E)=|V|-1 &
\end{array}
$$

$\operatorname{STP}(G)$ has $\approx 2^{|V|}$ facets...
but admits an extended formulation of size $O(|V| \cdot|E|)$.

Slack matrix

Consider $P=\operatorname{conv}\left(\left\{x^{(1)}, \ldots, x^{(m)}\right\}\right)=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}$.
Definition

Slack matrix

Consider $P=\operatorname{conv}\left(\left\{x^{(1)}, \ldots, x^{(m)}\right\}\right)=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}$.
Definition (Slack matrix of P)

Yannakakis' Theorem

Theorem (Yannakakis, 1989)
Let S be a slack-matrix of $P=\{A x \leq b\}$. If $S=T U$, with T, U nonnegative, then

$$
\{A x+T y=b, y \geq 0\}
$$

is an extended formulation of P.

Yannakakis' Theorem

Theorem (Yannakakis, 1989)
Let S be a slack-matrix of $P=\{A x \leq b\}$. If $S=T U$, with T, U nonnegative, then

$$
\{A x+T y=b, y \geq 0\}
$$

is an extended formulation of P.

Factorization of rank $r \rightarrow$ EF with r inequalities, BUT...
What about the equations?

Yannakakis' Theorem

Theorem (Yannakakis, 1989)

Let S be a slack-matrix of $P=\{A x \leq b\}$. If $S=T U$, with T, U nonnegative, then

$$
\{A x+T y=b, y \geq 0\}
$$

is an extended formulation of P.

Factorization of rank $r \rightarrow$ EF with r inequalities, BUT...
What about the equations?
Most of them are redundant. Hence, there is an EF $\left\{A^{\prime} x+T^{\prime} y=b^{\prime}, y \geq 0\right\}$ with $A^{\prime}, T^{\prime}, b^{\prime}$ small ($\leq r$ equations)

Problem: how to find it directly (i.e. without writing A, T explicitly) ?

Deterministic communication protocols

$f: X \times Y \rightarrow\{0,1\}$ boolean function (matrix).

Two players:
Alice knows $x \in X$
Bob knows $y \in Y$
want to compute $f(x, y)$ by exchanging bits.

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Goal: Minimize \# bits exchanged.

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Deterministic communication protocols (cont.)

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	0	0	0	1
x_{2}	0	0	0	1
x_{3}	0	0	0	0
x_{4}	0	1	1	1

Complexity of the protocol $=$ height of the tree.
$\#$ of rectangles $=\#$ of leaves $\leq 2^{\text {height }}$

EFs and communication complexity

Theorem Yannakakis, 1989

Let P be a polytope, and S its slack matrix. Assume there exists a deterministic protocol of complexity c for S. Then there is an EF of P of size $\leq 2^{c}$.

Deterministic protocol
\downarrow
Factorization of the slack matrix
\downarrow
Extended Formulation

EFs and communication complexity

Theorem Yannakakis, 1989
Let P be a polytope, and S its slack matrix. Assume there exists a deterministic protocol of complexity c for S. Then there is an EF of P of size $\leq 2^{c}$.

Can we skip the factorization step and directly get our EF?

EFs and communication complexity

Theorem Yannakakis, 1989
Let P be a polytope, and S its slack matrix. Assume there exists a deterministic protocol of complexity c for S. Then there is an EF of P of size $\leq 2^{c}$.

Can we skip the factorization step and directly get our EF?

Yes! We give an algorithm that, given a protocol and some information, outputs a corresponding EF in linear time.

The maximum stable set problem

By David Eppstein - https://commons.wikimedia.org/w/index.php?curid=3001223
Goal: find the largest set of jobs that do not interfere with each other.
The desired subgraph is a stable set of G (=no edges).

The maximum stable set problem

By David Eppstein - https://commons.wikimedia.org/w/index.php?curid=3001223
Goal: find the largest set of jobs that do not interfere with each other.
The desired subgraph is a stable set of G (=no edges).

STAB(G), G perfect
Perfect graph: graph without induced odd cycles or odd anticycles of length ≥ 5.

Let $\operatorname{STAB}(G)=\operatorname{conv}\left\{\chi^{S}: S\right.$ is a stable set in G $\}$.

Theorem (Chvàtal, 1974)

$G=(V, E)$ is perfect if and only if

$$
\begin{array}{rll}
\operatorname{STAB}(G)=\left\{x \in \mathbb{R}^{v}:\right. & x & \geq 0 \\
& \sum_{v \in C} x_{v} & \leq 1 \text { for all cliques } C \text { of } G\}
\end{array}
$$

Clique

Stable set

STAB(G), G perfect
Perfect graph: graph without induced odd cycles or odd anticycles of length ≥ 5.

Let $\operatorname{STAB}(G)=\operatorname{conv}\left\{\chi^{S}: S\right.$ is a stable set in $\left.G\right\}$.

Theorem (Chvàtal, 1974)

$G=(V, E)$ is perfect if and only if

$$
\begin{array}{lll}
\operatorname{STAB}(G)=\left\{x \in \mathbb{R}^{v}:\right. & x & \geq 0 \\
& \left.\sum_{v \in C} x_{v} \leq 1 \text { for all cliques } C \text { of } G\right\}
\end{array}
$$

Exponential number of inequalities \Rightarrow no use for a polytime algorithm.

Open question

Is there a polynomial size extended formulation (EF) for $\operatorname{STAB}(G)$?

STAB(G), G perfect

Theorem (Yannakakis, 1989)

Let G be a perfect graph on n vertices. There is a deterministic protocol for the slack matrix of $\operatorname{STAB}(G)$ of complexity $O\left(\log ^{2} n\right)$, hence an EF of size $n^{O(\log n)}$.

But as seen before, writing down the corresponding EF takes exponential time.

STAB(G), G perfect

Theorem (Yannakakis, 1989)

Let G be a perfect graph on n vertices. There is a deterministic protocol for the slack matrix of $\operatorname{STAB}(G)$ of complexity $O\left(\log ^{2} n\right)$, hence an EF of size $n^{O(\log n)}$.

But as seen before, writing down the corresponding EF takes exponential time.

We give an algorithm to write down the EF efficiently (i.e. in time $\left.n^{O(\log n)}\right)$.

Yannakakis' protocol

$$
\left.\begin{array}{rl}
\operatorname{STAB}(G)=\left\{x \in \mathbb{R}^{V}:\right. & x
\end{array} \geq 001 \text { (for all cliques } C \text { of } G\right\}
$$

Slack matrix (ignoring nonnegativity inequalities):

Alice gets a clique C, Bob gets a stable set S
Goal: decide whether $C \cap S=\emptyset$

Yannakakis' protocol

Alice: if $\exists v \in C$ of degree $\leq \frac{n}{2}$, send v, else send 0
Bob: If $v \in S$, then $S \cap C \neq \emptyset \rightarrow$ output 0
Else, restrict G (and S) to $N(v) \quad$ Since $C \subseteq N(v)$
Bob: If $\exists u \in S$ of degree $>\frac{n}{2}$, send u, else send 0
Repeat...
Note: If both Alice and Bob send 0 , then $C \cap S=\emptyset \rightarrow$ output 1

The graph shrinks by half at every stage, so Alice and Bob communicate $O(\log n)$ vertices. \Longrightarrow at most $O\left(\log ^{2} n\right)$ bits exchanged!

Yannakakis' protocol

Alice: if $\exists v \in C$ of degree $\leq \frac{n}{2}$, send v, else send 0
Bob: If $v \in S$, then $S \cap C \neq \emptyset \rightarrow$ output 0
Else, restrict G (and S) to $N(v) \quad$ Since $C \subseteq N(v)$
Bob: If $\exists u \in S$ of degree $>\frac{n}{2}$, send u, else send 0
Repeat...
Note: If both Alice and Bob send 0 , then $C \cap S=\emptyset \rightarrow$ output 1

This protocol partitions the slack matrix in $2^{O\left(\log ^{2} n\right)}=n^{O(\log n)}$ rectangles, giving a factorization of the same size \Longrightarrow

$$
\operatorname{STAB}(G)=\left\{x: \exists y \in \mathbb{R}^{n^{0(\log n)}}: A x+T y=b, y \geq 0\right\}
$$

But T has a complex structure, we could not get rid of redundant equations for general G.

Our result: first ingredient

Lemma

Let $G(V, E)$ be a perfect graph, and let $v_{1}, \ldots, v_{k} \in V$. Let G_{i} be the subgraph of G induced by v_{i} and its neighbors, and G_{0} be the subgraph of G induced by $V \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Then we have

$$
\operatorname{STAB}(G)=\operatorname{STAB}\left(G_{0}\right) \cap \cdots \cap \operatorname{STAB}\left(G_{k}\right) .
$$

Our result: first ingredient

Lemma

Let $G(V, E)$ be a perfect graph, and let $v_{1}, \ldots, v_{k} \in V$. Let G_{i} be the subgraph of G induced by v_{i} and its neighbors, and G_{0} be the subgraph of G induced by $V \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Then we have

$$
\operatorname{STAB}(G)=\operatorname{STAB}\left(G_{0}\right) \cap \cdots \cap \operatorname{STAB}\left(G_{k}\right) .
$$

G

G_{1}

Our result: first ingredient

Lemma

Let $G(V, E)$ be a perfect graph, and let $v_{1}, \ldots, v_{k} \in V$. Let G_{i} be the subgraph of G induced by v_{i} and its neighbors, and G_{0} be the subgraph of G induced by $V \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Then we have

$$
\operatorname{STAB}(G)=\operatorname{STAB}\left(G_{0}\right) \cap \cdots \cap \operatorname{STAB}\left(G_{k}\right)
$$

G_{2}

G_{1}

Our result: first ingredient

Lemma

Let $G(V, E)$ be a perfect graph, and let $v_{1}, \ldots, v_{k} \in V$. Let G_{i} be the subgraph of G induced by v_{i} and its neighbors, and G_{0} be the subgraph of G induced by $V \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Then we have

$$
\operatorname{STAB}(G)=\operatorname{STAB}\left(G_{0}\right) \cap \cdots \cap \operatorname{STAB}\left(G_{k}\right)
$$

G_{2}

G_{1}

Our result: second ingredient

Lemma (Fulkerson 1972)

G is a perfect graph if and only if
$\operatorname{STAB}(G)=\left\{x: x \geq 0, x^{T} y \leq 1 \forall y \in \operatorname{STAB}(\bar{G})\right\}$.

Our result: second ingredient

Lemma (Fulkerson 1972)

G is a perfect graph if and only if

$$
\operatorname{STAB}(G)=\left\{x: x \geq 0, x^{T} y \leq 1 \forall y \in \operatorname{STAB}(\bar{G})\right\} .
$$

Lemma (Martin 1991, Weltge 2015)

Given a non-empty polyhedron Q, let $P=\left\{x: x^{\top} y \leq 1 \forall y \in Q\right\}$. Given an EF for Q, we can efficiently get an EF for P (of roughly the same size).

Our result: second ingredient

Lemma (Fulkerson 1972)

G is a perfect graph if and only if

$$
\operatorname{STAB}(G)=\left\{x: x \geq 0, x^{T} y \leq 1 \forall y \in \operatorname{STAB}(\bar{G})\right\} .
$$

Lemma (Martin 1991, Weltge 2015)

Given a non-empty polyhedron Q, let $P=\left\{x: x^{\top} y \leq 1 \forall y \in Q\right\}$. If $Q=\{y: \exists z: A y+B z \leq b, C y+D z=d\}$, then

$$
\begin{gathered}
P=\left\{x: \exists \lambda \geq 0, \mu: A^{T} \lambda+C^{T} \mu=x,\right. \\
\left.B^{T} \lambda+D^{T} \mu=0, b^{T} \lambda+d^{T} \mu \leq 1\right\} .
\end{gathered}
$$

Corollary

Given an EF for $\operatorname{STAB}(G), G$ perfect, we can efficiently obtain an extended formulation for $\operatorname{STAB}(\bar{G})$ (of roughly the same size).

Main algorithm

Input: G on n nodes
Let $v_{1}, \ldots, v_{k} \in V$ be the nodes with degree $\leq \frac{n}{2}$
if $k \geq \frac{n}{2}$ then
Recurse on $G_{1}, \ldots, G_{k}, G_{0}$

$$
\begin{aligned}
& G_{i}=G\left[N^{+}\left(v_{i}\right)\right] \\
& G_{0}=G\left[V \backslash v_{1}, \ldots, v_{k}\right]
\end{aligned}
$$

else
Repeat with the complement \bar{G}

Main algorithm

Input: G on n nodes
Let $v_{1}, \ldots, v_{k} \in V$ be the nodes with degree $\leq \frac{n}{2}$
if $k \geq \frac{n}{2}$ then
Recurse on $G_{1}, \ldots, G_{k}, G_{0}$

$$
\begin{aligned}
& G_{i}=G\left[N^{+}\left(v_{i}\right)\right] \\
& G_{0}=G\left[V \backslash v_{1}, \ldots, v_{k}\right]
\end{aligned}
$$

else
Repeat with the complement \bar{G}
...Until our graphs have constant size. Then reconstruct the formulation for $\operatorname{STAB}(G)$ using the previous Lemmas.

Main algorithm

Input: G on n nodes
Let $v_{1}, \ldots, v_{k} \in V$ be the nodes with degree $\leq \frac{n}{2}$
if $k \geq \frac{n}{2}$ then
Recurse on $G_{1}, \ldots, G_{k}, G_{0} \quad G_{i}=G\left[N^{+}\left(v_{i}\right)\right]$
$G_{0}=G\left[V \backslash v_{1}, \ldots, v_{k}\right]$
else
Repeat with the complement \bar{G}
...Until our graphs have constant size. Then reconstruct the formulation for $\operatorname{STAB}(G)$ using the previous Lemmas.

- If G has $<\frac{n}{2}$ 'low degree' nodes, then \bar{G} has $\geq \frac{n}{2}$ 'low degree' nodes.

Main algorithm

Input: G on n nodes
Let $v_{1}, \ldots, v_{k} \in V$ be the nodes with degree $\leq \frac{n}{2}$
if $k \geq \frac{n}{2}$ then
Recurse on $G_{1}, \ldots, G_{k}, G_{0} \quad G_{i}=G\left[N^{+}\left(v_{i}\right)\right]$
$G_{0}=G\left[V \backslash v_{1}, \ldots, v_{k}\right]$
else
Repeat with the complement \bar{G}
...Until our graphs have constant size. Then reconstruct the formulation for $\operatorname{STAB}(G)$ using the previous Lemmas.

- If G has $<\frac{n}{2}$ 'low degree' nodes, then \bar{G} has $\geq \frac{n}{2}$ 'low degree' nodes.
- We recurse on at most n graphs of size at most $n / 2 \Longrightarrow$ $n^{O(\log n)}$ total running time.

A general result

Theorem

Assume that there is a deterministic protocol, described by a tree τ, that partitions the slack matrix of P into rectangles $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$. Then there is an algorithm that, given τ and a representation of \mathcal{R}, outputs an extended formulation of P in linear time in the size of the input.

A general result

Theorem

Assume that there is a deterministic protocol, described by a tree τ, that partitions the slack matrix of P into rectangles $\mathcal{R}=\left\{R_{1}, \ldots, R_{k}\right\}$. Then there is an algorithm that, given τ and a representation of \mathcal{R}, outputs an extended formulation of P in linear time in the size of the input.

- Our method is flexible: we can start from approximate EFs at the bottom and get an approximate EF of P.
- In particular, our method yields a relaxation of $\operatorname{STAB}(G)$ for non-perfect graphs G.

Conclusion

We give an algorithm to turn deterministic protocols into extended formulations in output-efficient time.
In particular we give an output-efficient algorithm to construct a quasipolynomial size EF for $\operatorname{STAB}(G), G$ perfect.

Open question

Can we extend this to randomized protocols?
(See Faenza, Fiorini, Grappe, Tiwary 2015)

Open question

Is there a polynomial size extended formulation for $\operatorname{STAB}(G), G$ perfect?

Conclusion

We give an algorithm to turn deterministic protocols into extended formulations in output-efficient time.
In particular we give an output-efficient algorithm to construct a quasipolynomial size EF for $\operatorname{STAB}(G), G$ perfect.

Open question

Can we extend this to randomized protocols?
(See Faenza, Fiorini, Grappe, Tiwary 2015)

Open question

Is there a polynomial size extended formulation for $\operatorname{STAB}(G), G$ perfect?

Thank you for your attention!

