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The minimum weight spanning tree problem

Goal: connect all the vertices in the graph G using edges of minimum
total weight. The desired subgraph is a spanning tree of G .



Combinatorial algorithms

For problems like finding the minimum weight spanning tree, there are
fast "ad hoc" algorithms.

However, such algorithms can rarely be adapted when extra
constraints arise (e.g. “find the spanning tree of minimum weight such
that node A and B are at distance at most 5”).

In practice, we need more flexible algorithms...



Linear programming approach

Idea: associate to each solution of our problem to a point in Rd and
describe the convex hull with a linear system.

spanning tree T χT
e =

{
1 if e ∈ T

0 otherwise

STP(G ) = conv{χT : T is a spanning tree of G} = {x ∈ RE : Ax ≤ b}

Then the problem can be formulated as a linear program (LP):

max 〈c , x〉
subject to Ax 6 b, x ∈ Rd



Spanning tree polytope

Graph G = (V ,E )

STP(G ) =
{
x ∈ RE :

x(E (U)) ≤ |U| − 1 ∀U ⊂ V

x ≥ 0

x(E ) = |V | − 1
}

Problem: our description Ax ≤ b has exponential size!



Extended formulations

Let P = {x ∈ Rd : Ax ≤ b} be a polytope.

Definition

Q = {A′x +Cy ≤ b′} is an extended formulation for P if there exists
a projection π : Rd+k → Rd such that π(Q) = P.

Q has higher dimension but less facets!

π

P

Q
P = π(Q)

= {x ∈ Rd | ∃ y ∈ Rk : (x , y) ∈ Q}
= {x ∈ Rd | ∃ y ∈ Rk : Ax + Cy 6 b}



Wong’s extended formulation

Graph G = (V ,E )

• Bidirect the edges, fix root r

• Spanning trees = r -arborescences

• r -arborescence = union of r -v flow for each v ∈ V \ {r}.

r



Wong’s extended formulation

Graph G = (V ,E )

• Bidirect the edges, fix root r

• Spanning trees = r -arborescences

• r -arborescence = union of r -v flow for each v ∈ V \ {r}.

r



Wong’s extended formulation

STP(G ) =
{
x ∈ RE | ∃ c ∈ R~E ,φv ∈ R~E ∀ v ∈ V − r :

φv (δout(r))− φv (δin(r)) = 1 ∀ v ∈ V − r

φv (δout(u))− φv (δin(u)) = 0 ∀ u ∈ V − r − v

0 ≤ φv ≤ c ∀ v ∈ V − r

xuv = c(u,v) + c(v ,u) ∀ uv ∈ E

x(E ) = |V | − 1
}

STP(G ) has ≈ 2|V | facets...
but admits an extended formulation of size O(|V | · |E |).



Slack matrix

Consider P = conv({x (1), ... , x (m)}) = {x ∈ Rd |Ax 6 b}.

Definition

(Slack matrix of P)

SSij

Sij := bi − AT
i x

(j)
# facets

# vertices

x (j)

Aix = bi

P
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SSij

Sij := bi − AT
i x

(j)
# facets

# vertices

vertex j

facet i

Sij
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Yannakakis’ Theorem

Theorem (Yannakakis, 1989)

Let S be a slack-matrix of P = {Ax ≤ b}. If S = TU, with T ,U

nonnegative, then

{Ax + Ty = b, y ≥ 0}

is an extended formulation of P.

Factorization of rank r → EF with r inequalities, BUT...
What about the equations?

Most of them are redundant. Hence, there is an EF
{A′x + T ′y = b′, y ≥ 0} with A′,T ′, b′ small (≤ r equations)

Problem: how to find it directly (i.e. without writing A,T explicitly) ?
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Deterministic communication protocols

f : X × Y → {0, 1} boolean function (matrix).

Two players:

Alice knows x ∈ X

Bob knows y ∈ Y

want to compute f (x , y) by exchanging bits.

y1 y2 y3 y4

x1 0 0 0 1
x2 0 0 0 1
x3 0 0 0 0
x4 0 1 1 1

Goal: Minimize # bits exchanged.



Deterministic communication protocols (cont.)

y1 y2 y3 y4

x1 0 0 0 1
x2 0 0 0 1
x3 0 0 0 0
x4 0 1 1 1

Alice

Bob Bob

Alice 0

1 0

0 1

x ∈ {x1, x2} x ∈ {x3, x4}

y ∈ {y1, y2, y3} y = y4 y ∈ {y2, y3, y4} y = y1

x = x4 x = x3
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Deterministic communication protocols (cont.)

y1 y2 y3 y4

x1 0 0 0 1
x2 0 0 0 1
x3 0 0 0 0
x4 0 1 1 1

Alice

Bob Bob

Alice 0

1 0

0 1

x ∈ {x1, x2} x ∈ {x3, x4}

y ∈ {y1, y2, y3} y = y4 y ∈ {y2, y3, y4} y = y1

x = x4 x = x3

Complexity of the protocol = height of the tree.

# of rectangles = # of leaves ≤ 2height



EFs and communication complexity
Theorem Yannakakis, 1989

Let P be a polytope, and S its slack matrix. Assume there exists a
deterministic protocol of complexity c for S . Then there is an EF of
P of size ≤ 2c .

Deterministic protocol
↓

Factorization of the slack matrix
↓

Extended Formulation
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Can we skip the factorization step and directly get our EF?



EFs and communication complexity
Theorem Yannakakis, 1989

Let P be a polytope, and S its slack matrix. Assume there exists a
deterministic protocol of complexity c for S . Then there is an EF of
P of size ≤ 2c .

Deterministic protocol
↓

Factorization of the slack matrix
↓

Extended Formulation

Can we skip the factorization step and directly get our EF?

Yes! We give an algorithm that, given a protocol and some
information, outputs a corresponding EF in linear time.



The maximum stable set problem

By David Eppstein - https://commons.wikimedia.org/w/index.php?curid=3001223

Goal: find the largest set of jobs that do not interfere with each other.
The desired subgraph is a stable set of G (=no edges).
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STAB(G), G perfect
Perfect graph: graph without induced odd cycles or odd anticycles of
length ≥ 5.

Let STAB(G) = conv{χS : S is a stable set in G}.

Theorem (Chvàtal, 1974)

G = (V ,E) is perfect if and only if

STAB(G) = {x ∈ RV : x ≥ 0∑
v∈C xv ≤ 1 for all cliques C of G}

Clique Stable set
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Perfect graph: graph without induced odd cycles or odd anticycles of
length ≥ 5.

Let STAB(G) = conv{χS : S is a stable set in G}.

Theorem (Chvàtal, 1974)

G = (V ,E) is perfect if and only if

STAB(G) = {x ∈ RV : x ≥ 0∑
v∈C xv ≤ 1 for all cliques C of G}

Clique Stable set

Exponential number of inequalities ⇒ no use for a polytime algorithm.

Open question

Is there a polynomial size extended formulation (EF) for STAB(G)?
;



STAB(G), G perfect

Theorem (Yannakakis, 1989)

Let G be a perfect graph on n vertices. There is a deterministic protocol
for the slack matrix of STAB(G ) of complexity O( log 2n), hence an EF
of size nO( log n).

But as seen before, writing down the corresponding EF takes
exponential time.

We give an algorithm to write down the EF efficiently (i.e. in time
nO( log n)).
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Yannakakis’ protocol

STAB(G ) = {x ∈ RV : x ≥ 0∑
v∈C xv ≤ 1 for all cliques C of G}

Slack matrix (ignoring nonnegativity inequalities):

1 if C ∩ S = ∅
0 otherwise

S stable set

C clique

Alice gets a clique C , Bob gets a stable set S
Goal: decide whether C ∩ S = ∅



Yannakakis’ protocol

Alice: if ∃ v ∈ C of degree ≤ n
2 , send v , else send 0

Bob: If v ∈ S , then S ∩ C 6= ∅ → output 0
Else, restrict G (and S) to N(v) Since C ⊆ N(v)

Bob: If ∃ u ∈ S of degree > n
2 , send u, else send 0

Repeat...

Note: If both Alice and Bob send 0, then C ∩ S = ∅ → output 1

The graph shrinks by half at every stage, so Alice and Bob
communicate O( log n) vertices. =⇒ at most O( log 2n) bits
exchanged!



Yannakakis’ protocol

Alice: if ∃ v ∈ C of degree ≤ n
2 , send v , else send 0

Bob: If v ∈ S , then S ∩ C 6= ∅ → output 0
Else, restrict G (and S) to N(v) Since C ⊆ N(v)

Bob: If ∃ u ∈ S of degree > n
2 , send u, else send 0

Repeat...

Note: If both Alice and Bob send 0, then C ∩ S = ∅ → output 1

This protocol partitions the slack matrix in 2O( log 2n) = nO( log n)

rectangles, giving a factorization of the same size =⇒

STAB(G ) = {x : ∃ y ∈ RnO( log n)

: Ax + Ty = b, y ≥ 0}

But T has a complex structure, we could not get rid of redundant
equations for general G .



Our result: first ingredient
Lemma

Let G (V ,E ) be a perfect graph, and let v1, ... , vk ∈ V . Let Gi be the
subgraph of G induced by vi and its neighbors, and G0 be the subgraph
of G induced by V \ {v1, ... , vk}. Then we have

STAB(G ) = STAB(G0) ∩ · · · ∩ STAB(Gk).

G

1 2 3

4 56

G1

1 2

4

G2

1 2 3

4 6

G0

3
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Our result: second ingredient

Lemma (Fulkerson 1972)

G is a perfect graph if and only if

STAB(G ) = {x : x ≥ 0, xT y ≤ 1 ∀ y ∈ STAB(Ḡ )}.
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Lemma (Fulkerson 1972)

G is a perfect graph if and only if

STAB(G ) = {x : x ≥ 0, xT y ≤ 1 ∀ y ∈ STAB(Ḡ )}.

Lemma (Martin 1991, Weltge 2015)

Given a non-empty polyhedron Q, let P = {x : xT y ≤ 1 ∀ y ∈ Q}.
If Q = {y : ∃ z : Ay + Bz ≤ b,Cy + Dz = d}, then

P = {x : ∃λ ≥ 0,µ : ATλ+ CTµ = x ,

BTλ+ DTµ = 0, bTλ+ dTµ ≤ 1}.

Corollary

Given an EF for STAB(G ), G perfect, we can efficiently obtain an
extended formulation for STAB(Ḡ ) (of roughly the same size).
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STAB(G0)



1 2 3

4 56

1 2

4

1 2 3

4 6

3

4 56

1 2 3

4 6

STAB(G1){
x1 + x2 + x4 ≤ 1
0 ≤ x ≤ 1

STAB(Ḡ2)
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Main algorithm

Input: G on n nodes
Let v1, ... , vk ∈ V be the nodes with degree ≤ n

2

if k ≥ n
2 then

Recurse on G1, ... ,Gk ,G0 Gi = G [N+(vi )]

G0 = G [V \ v1, ... , vk ]

else
Repeat with the complement Ḡ

...Until our graphs have constant size. Then reconstruct the
formulation for STAB(G ) using the previous Lemmas.

• If G has < n
2 ’low degree’ nodes, then Ḡ has ≥ n

2 ’low degree’
nodes.

• We recurse on at most n graphs of size at most n/2 =⇒
nO( log n) total running time.



Main algorithm

Input: G on n nodes
Let v1, ... , vk ∈ V be the nodes with degree ≤ n

2

if k ≥ n
2 then

Recurse on G1, ... ,Gk ,G0 Gi = G [N+(vi )]

G0 = G [V \ v1, ... , vk ]

else
Repeat with the complement Ḡ
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A general result

Theorem
Assume that there is a deterministic protocol, described by a tree τ ,
that partitions the slack matrix of P into rectangles R = {R1, ... ,Rk}.
Then there is an algorithm that, given τ and a representation of R,
outputs an extended formulation of P in linear time in the size of the
input.



A general result

Theorem
Assume that there is a deterministic protocol, described by a tree τ ,
that partitions the slack matrix of P into rectangles R = {R1, ... ,Rk}.
Then there is an algorithm that, given τ and a representation of R,
outputs an extended formulation of P in linear time in the size of the
input.

• Our method is flexible: we can start from approximate EFs at the
bottom and get an approximate EF of P.

• In particular, our method yields a relaxation of STAB(G ) for
non-perfect graphs G .



Conclusion

We give an algorithm to turn deterministic protocols into extended
formulations in output-efficient time.
In particular we give an output-efficient algorithm to construct a
quasipolynomial size EF for STAB(G ), G perfect.

Open question

Can we extend this to randomized protocols?
(See Faenza, Fiorini, Grappe, Tiwary 2015)

Open question

Is there a polynomial size extended formulation for STAB(G ), G perfect?

Thank you for your attention!
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