
Harmonic Oscillator in Classical Mechanics and Quantum Mechanics

Moyal Star Product

Generalizations

Some stuff in this talk has been explained on the blackboard, e.g.:

Def.: Ordered ∗-algebra

An ordered ∗-algebra is an associative C-algebra A with unit 1 ∈ A,

antilinear ∗-involution · ∗ : A → A fulfilling (ab)∗ = b∗a∗ and (a∗)∗ = a for all

a, b ∈ A, and a partial order ≤ on the real linear subspace

AH := { a ∈ A | a∗ = a } of Hermitian elements in A, such that

a + c ≤ b + c , d∗a d ≤ d∗b d and 0 ≤ 1

hold for all a, b, c ∈ AH with a ≤ b and all d ∈ A.

Exercise

Where in this talk should one drop words like “Hamilton’s equations” or

“Schrödinger equation”?
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Harmonic Oscillator in Classical Mechanics and Quantum Mechanics

Moyal Star Product

Generalizations

I Classical physics (since Galileo / Newton, ...):
I Describes our world on “not too small” scales.
I E.g.: classical mechanics describes the behaviour of finitely many pointlike

particles (solar system, canon balls, pendulum, ...)
I Mathematical description by manifolds, fibre bundles, differential equations,

...

I Quantum physics (since 1900, Planck, ...):
I Describes our world on “very small” scales.
I E.g.: quantum mechanics describes the behaviour of finitely many pointlike

particles (electrons in an atom, atomic nuclei, ...)
I Mathematical description by Hilbert spaces, operator algebras, differential

equations, ...
I Depends on Planck’s constant ~ ≈ 10−34 kg m2 s−1.

I The Problem:
I Classical and quantum physics look and behave very differently.
I Classical physics is intuitive and “easy”, quantum physics is not.
I But classical physics should be an approximation to quantum physics.
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Idea

classical physics = lim
~→0

quantum physics

Outline

I Harmonic Oscillator in Classical Mechanics and Quantum Mechanics

I Wick Star Product

I Generalizations
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Harmonic Oscillator in Classical Mechanics

I Phase space: R2

I Observables: Real-valued polynomial functions in q := pr1 : R
2 → R and

p := pr2 : R
2 → R.

I Hamiltonian: H := p2+q2

2 .

I Equations of motion: A smooth curve γ : R→ R
2 is a solution of the

equations of motion iff

d
dt

∣∣∣∣
τ

q
(
γ(t)

)
=
∂H
∂p

∣∣∣∣
γ(τ)

= p
(
γ(τ)

)
and

d
dt

∣∣∣∣
τ

p
(
γ(t)

)
= −∂H

∂q

∣∣∣∣
γ(τ)

= −q
(
γ(τ)

)
hold for all τ ∈ R.
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Harmonic Oscillator in Quantum Mechanics

I Phase space:
{
ψ ∈ S(R)/U(1)

∣∣ ||ψ|| = 1
}

, where S denotes the

pre-Hilbert space of rapidly decreasing smooth complex-valued

functions.

I Observables: Hermitian (complex) polynomials in q, p ∈ L∗
(
S(R)

)
,

where (
qψ
)
(x) := xψ(x) and pψ := −i~ψ′.

I Hamiltonian: H := p2+q2

2 .

I Equations of motion: A smooth curve

γ : R→
{
ψ ∈ S(R)/U(1)

∣∣ ||ψ|| = 1
}

is a solution of the equations of

motion iff

i~ d
dt

∣∣∣∣
τ

γ(t) = Hγ(τ) =
1
2

(
− ~2γ(τ)′′ + q2(γ(τ)))

holds for all τ ∈ R.
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Comparison of classical and quantum description

Similarities

I Observables are polynomials in position-observable q and

momentum-observable p.

These are the Hermitian elements of an ordered ∗-algebra.

I Hamiltonian is H = p2+q2

2 .

Differences

I Phase spaces seem to be different.

I Equations of motion seem to be different.
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States of ordered ∗-algebras:

Let A be an ordered ∗-algebra, then a state on A is a linear functional

φ : A → C with the following properties:

I φ is Hermitian, i.e. 〈φ , a∗ 〉 = 〈φ , a 〉 for all a ∈ A.

I φ is positive, i.e. 〈φ , a 〉 ≥ 0 for all positive Hermitian a ∈ A.

I φ is normalized, i.e. 〈φ , 1 〉 = 1.

I If A is the classical observable algebra of polynomial functions on R2,

then the points x ∈ R2 give states δx : A → C,

f 7→ 〈 δx , f 〉 := f (x).

I If A is the quantum observable algebra of operators on S(R), then the

normalized vectors ψ ∈ S(R)/U(1) give states ωψ : A → C,

a 7→ 〈ωψ , a 〉 := 〈ψ | a(ψ) 〉.
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Equations of motion

A smooth curve γ from R to the states of the observable algebra A fulfils the

equations of motion iff

d
dt

∣∣∣∣
τ

〈
γ(t) , a

〉
=
〈
γ(τ) , { a , H }

〉
holds for all a ∈ A.

I In classical mechanics, { · , · } is the standard Poisson bracket

{ a , b } := ∂a
∂q

∂b
∂p
− ∂b
∂q

∂a
∂p

for smooth functions a, b on R2.

I In quantum mechanics, { · , · } is the commutator

{ a , b } := ab − ba
i~

for adjointable operators a, b on S(R).
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Unified description of classical and quantum mechanics

I Observables are the Hermitian elements of an ordered ∗-algebra A.

I State of the system described by a state of A.

I Equations of motion are

d
dt

∣∣∣∣
τ

〈
γ(t) , a

〉
=
〈
γ(τ) , { a , H }

〉
with bracket { · , · } on A and Hermitian Hamiltonian H ∈ A.

What about the classical limit?

classical physics = lim
~→0

quantum physics

Matthias Schötz Introduction to Deformation Quantization



Harmonic Oscillator in Classical Mechanics and Quantum Mechanics

Moyal Star Product

Generalizations

Unified description of classical and quantum mechanics

I Observables are the Hermitian elements of an ordered ∗-algebra A.

I State of the system described by a state of A.

I Equations of motion are

d
dt

∣∣∣∣
τ

〈
γ(t) , a

〉
=
〈
γ(τ) , { a , H }

〉
with bracket { · , · } on A and Hermitian Hamiltonian H ∈ A.

What about the classical limit?

classical physics = lim
~→0

quantum physics

Matthias Schötz Introduction to Deformation Quantization



Harmonic Oscillator in Classical Mechanics and Quantum Mechanics

Moyal Star Product

Generalizations

Idea of Deformation Quantization

I Describe the observable algebra of classical and quantum physics by

the same vector space.

I The vector space of the classical observable algebra is a good choice:

We understand that quite well, just functions on the “intuitive” classical

phase space.

I The product of the observable algebra depends on ~, this is the star

product ?~.

I In the limit ~→ 0, we should get the classical, pointwise product ?0.

I The bracket { · , · }~ also depends on ~. We have

{ a , b }~ =
a ?~ b − b ?~ a

i~

for ~ > 0, and lim~→0{ a , b }~ should be the classical Poisson bracket.
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Example: the Wick star product

For two polynomial functions a, b on R2 ∼= C we define

a ?~ b :=
∞∑

r=0

(2~)r

r !
∂r a
∂z r

∂r b
∂z r

with
∂

∂z
=

1
2

(
∂

∂q
+

1
i
∂

∂p

)
and

∂

∂z
=

1
2

(
∂

∂q
− 1

i
∂

∂p

)
.
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Everything up to now has been physics, so let’s do math:

Let’s generalize stuff!

This leads to:

I Formal deformation quantization on Poisson manifolds.

I Strict deformation quantization of C∗-algebras.

I Others...
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