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Goodness-of-Fit test

Consider an i.i.d. sample X1, . . . ,Xn ∼ PX . We are interested if the underlying
distribution PX equals a given probability distribution Q. In terms of statistical
testing

H0 : PX = Q and H1 : PX ̸= Q.
An asymptotically consistent level-α test satisfies

lim
n→∞

P(¬H0) = α under H0 and lim
n→∞

P(¬H0) = 1 under H1.

Example. With F̂n(t) =
1
n

∑n
i=1 1{Xi≤t} we define

KS =
√
n sup

t
|F̂n(t)− FQ(t)| (Kolmogorov-Smirnov).

It is well known that

KS
D−→ sup

t∈[0,1]

|B(t)| (Kolmogorov distribution),

where B(·) denotes the Brownian Bridge.

We obtain an asymptotically consistent level-α test if we reject H0 when
KS > c∗, where c∗ denotes the (1−α)-quantile of the Kolmogorov distribution.
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The Weibull distribution

The Weibull distribution W (λ, k), λ, k > 0 is a probabilty distribution on the
positive real numbers with pdf

f (x) =
k

λk
xk−1 exp

(
−
(
x

λ

)k)
, x > 0.

Figure: pdf and cdf for parameter
values (λ, k) = (0.5, 0.8) (orange) and
(λ, k) = (2, 3) (blue).

Given X1, . . . ,Xn ∼ PX and W = {W (λ, k) | λ, k > 0} our test problem
becomes

H0 : PX ∈ W and H1 : PX /∈ W.
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Stein characterizations

The density approach within the framework of Stein’s states that a random
variable X follows a probability distribution with density f if and only if

E
[
p′(X ) +

f ′(X )

f (X )
p(X )

]
= 0

for all p belonging to a sufficiently large function class.

This characterization can be untied from the class of test functions: Under weak
assumptions, a positive random variable X with density pX follows a probability
distribution with density f if and only if

pX (t) = E
[
− f ′(X )

f (X )
1{X>t}

]
, t > 0.

In the Weibull case we obtain

f (t) = E
[
−k − 1− kX k/λk

X
1{X>t}

]
, t > 0.
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Stein characterizations

With the latter density representation, we get a new characterization of the
Weibull distribution based on the LaPlace transform LX (t) = E[e−tX ] of a
random variable X .

Theorem 1

Let λ, k > 0 and X be a positive random variable with Laplace transform
LX satisfying E

∣∣X (d/dxf (x)|X )/f (X )| < ∞. Then X has a W (λ, k)-
distribution if and only if

tLX (t) = E
[
1

X

(
k

(
X

λ

)k

− k + 1

)(
1− e−tX

)]
for each t > 0.

Furthermore we can estimate the LaPlace transform from the sample through

L̂X =
1

n

n∑
i=1

e−tXi , t > 0.
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Stein characterizations

With estimators λ̂n and k̂n of λ and k this leads to the test statistic

Tn = n

∫ ∞

0

∣∣∣∣∣1n
n∑

j=1

1

Xj

(
k̂n

(
Xj

λ̂n

)k̂n

− k̂n + 1

)(
1− e−tXj

)
− t

n

n∑
j=1

e−tXj

∣∣∣∣∣
2

w(t)dt

with an appropriate weight function w : [0,∞) → [0,∞) satisfying∫ ∞

0

(t4 + 1)w(t)dt <∞.

A reasonable choice is w
(1)
a (t) = e−a|t| or w

(2)
a (t) = e−at2 , t ∈ [0,∞), where

a > 0 is some tuning parameter since the test statistic can be calculated
explicitly in these cases.

� H0 is rejected for large values of Tn.
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Limit distribution under H0

In our setting we consider a triangular array Xn,1, . . . ,Xn,n, n ∈ N, of row-wise
i.i.d. random variables, defined on a common probability space (Ω,A ,P), with

Xn,1 ∼ W (λn, kn), kn, λn > 0,

and

lim
n→∞

λn = λ0 > 0, lim
n→∞

kn = k0 > 0.

Since the true parameters are unknown, we estimate them by λ̂n and k̂n. We
assume the linear representations

√
n(λ̂n − λn) =

1√
n

n∑
j=1

ψ1(Xn,j , λn, kn) + oP(1),

√
n(k̂n − kn) =

1√
n

n∑
j=1

ψ2(Xn,jλn, kn) + oP(1),

with ψ1 and ψ2 satisfying some integrability assumptions.
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Limit distribution under H0

The Maximum likelihood estimators are solutions to

λ̂n =

(
1

n

n∑
i=1

X k̂n
n,i

)1/k̂n

and
n

k̂n
+

n∑
i=1

logXn,i =
n∑n

i=1 X
k̂n
n,i

n∑
i=1

X k̂n
n,i logXn,i .

and satisfy

√
n

(
λ̂n − λn

k̂n − kn

)
=

1√
n

n∑
i=1

I(λ0, k0)
−1 d

d(λ, k)
log f (Xn,i , λ, k)

∣∣∣∣
(λn,kn)

+ oP(1),

where I(λ0, k0) is the Fisher information matrix.

The Moment estimators are solutions to

k̂n =
π√
6
(S2

n )
−1/2 and log λ̂n = logX +

γ

k̂n
,

where γ is the Euler-Mascheroni constant and S2
n = 1

n−1

∑n
i=1(logXn,i − logX )2. It

can be shown that

√
n

(
λ̂n − λn
k̂n − kn

)
=

1
√
n

n∑
i=1

(
λn(logXn,i +

3γkn
π2 (logXn,i − log λn + γ/kn)2 +

γ
2kn

− log λn)

kn
2
− 3k3n

π2 (logXn,i − log λn + γ/kn)2

)
+ oP(1),
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Limit distribution under H0

Let L 2
w = L2([0,∞),B[0,∞),w(t)dt) be the Hilbert space of Borel-measurable

functions g : [0,∞) → R satisfying

∥g∥2 =
∫ ∞

0

g2(t)w(t)dt <∞

with respect to a measurable positive weight function w(·). The scalar product
on L 2

w is defined by

⟨g , h⟩ =
∫ ∞

0

g(t)h(t)w(t)dt.

A L 2
w -valued random element is a measurable function V : Ω → L 2

w . Let
E∥V ∥2 <∞. Its expectation is the unique µ ∈ L 2

w such that

⟨µ, g⟩ = E
[
⟨V , g⟩

]
for every g ∈ L 2

w .
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Limit distribution under H0

The covariance operator Σ : L 2
w → L 2

w is the unique positive self-adjoint
nuclear operator such that

⟨Σg , h⟩ = E
[
⟨V , g⟩⟨V , h⟩

]
, g , h ∈ L 2

w .

A function K (s, t), s, t > 0 is a kernel of the covariance operator Σ if

Σg =

∫ ∞

0

K (s, t)g(t)w(t)dt, g ∈ L 2
w .

We call a L 2
w -valued random element V Gaussian if ⟨V , g⟩ is one-dimensional

Gaussian for every g ∈ L 2
w . We can write

Tn = ∥Vn∥2,
where

Vn(t) =
1√
n

n∑
j=1

[
1

Xn,j

(
k̂n

(
Xn,j

λ̂n

)k̂n

− k̂n + 1

)(
1− e−tXn,j

)
− te−tXn,j

]

for t ≥ 0. We can interpret Vn : Ω → L 2
w as a random element of L 2

w .
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Limit distribution under H0

Theorem 2

Under the triangular array introduced at the beginning of this section, we
have

Tn = ∥Vn∥2
D−→ ∥W∥2, as n → ∞.

Here, W is a centered Gaussian element of L 2
w with covariance operator

Σλ0,k0 whose kernel is given by E[W (t)W (s)], where

W (t) =
1

X

((
X

λ0

)k0

k0−k0+1

)(
1−e−tX

)
− te−tX

− ψ1(X , λ0, k0)
k2
0

λk0+1
0

E
[
X k0−1

(
1−e−tX

)]
+ ψ2(X , λ0, k0)

(
k0

λk00

E
[
X k0−1 log(X/λ0)

(
1−e−tX

)]
− E

[
X−1

(
1−e−tX

)]
+

1

λk00

E
[
X k0−1

(
1−e−tX

)])
,

and X has the Weibull distribution W (λ0, k0).
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Limit distribution under H0

Sketch of the proof.

Part 1
With some Taylor expansions and the linear representations of λ̂n and k̂n one
can show that there exist row-wise i.i.d. L 2

w -valued random elements
Wn,j , 1 ≤ j ≤ n such that∥∥∥∥∥Vn(·)−

1√
n

n∑
j=1

Wn,j(·)

∥∥∥∥∥
2

= oP(1).

Part 2
A central limit theorem for Hilbert space valued triangular arrays yields

1√
n

n∑
j=1

Wn,j
D−→ W,

where W is a centered Gaussian random element with covariance operator
Σλ0,k0 . Slutzky’s lemma then yields the claim.
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Limit distribution under contiguous alternatives
Let Xn,1, . . . ,Xn,n, n ∈ N, be a triangular array of row-wise i.i.d. random
variables having Lebesgue density

gn(x) = f (x)
(
1 + c(x)/

√
n
)
, x ∈ [0,∞).

Here, f is the W (λ, k)-density for some fixed λ, k > 0, c : [0,∞) → R is a
measurable, bounded function satisfying

∫∞
0

c(x)f (x)dx = 0.

Theorem 3

Under the stated assumptions, we have

Tn
D−→ ∥W + ζ∥2 as n → ∞,

where ζ ∈ L 2
w satisfies ⟨ζ, g⟩ = E[⟨η(X , ·), g(·)⟩c(X )] for each g ∈ L 2

w ,
where X has the Weibull distribution W (λ, k), and

η(x , s) =
1

x

(( x
λ

)k
k − k + 1

)(
1− e−sx

)
− te−sx − ψ1(x , λ, k)

k2

λk+1
E
[
X k−1

(
1− e−sX

)]
+ ψ2(x , λ, k)

(
k

λk
E
[
X k−1 log(X/λ)

(
1− e−sX

)]
− E

[
X−1

(
1− e−sX

)]
+

1

λk
E
[
X k−1

(
1− e−sX

)])
, x , s ≥ 0
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Consistency

We know that the asymptotic distribution of Tn is equal to ∥W∥2, where W is a
centered Gaussian random element with covariance operator Σλ0,k0 . Moreover,

∥W∥2 D
=

∞∑
i=1

ηiXi ,

where ηi are the eigenvalues of Σλ0,k0 and Xi is a sequence of i.i.d. Gaussian
random variables.

� Not used in practice.

Instead we apply a parametric bootstrap procedure:

Consider an i.i.d. sequence (Xn)n∈N of copies of X , where X is a non-degenerate
positive random variable satisfying E[Xm] <∞ and E[| logX |Xm] <∞ for each
m ∈ N. Moreover, we assume that there are λ0, k0 > 0 such that

(λ̂n, k̂n)
a.s.−→ (λ0, k0), as n → ∞.
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Consistency
For X1, . . . ,Xn as above the parametric bootstrap includes the following steps:

First compute the estimators λ̂n = λ̂n(X1, . . . ,Xn) and k̂n = k̂n(X1, . . . ,Xn).
Then:

Generate another sample X ∗
1 , . . . ,X

∗
n of size n following the W (λ̂n, k̂n)-law.

Estimate the parameters λ and k from X ∗
1 , . . . ,X

∗
n and calculate the test

statistic Tn.

By repeating this procedure b times, we obtain T ∗
n,1, . . . ,T

∗
n,b. Given the

nominal level α ∈ (0, 1), we use the empirical (1− α)-quantile of T ∗
n,1, . . . ,T

∗
n,b,

i.e.,

c∗n,b(α) =

{
T ∗
b(1−α):b, b(1− α) ∈ N,

T ∗
⌊b(1−α)⌋+1:b, otherwise

as a critical value. The hypothesis H0 is rejected if Tn(X1, . . . ,Xn) > c∗n,b(α).
With Theorem 2 one can show that

P(Tn > c∗n,b)
n,b→∞−→ α under H0 and P(Tn > c∗n,b)

n,b→∞−→ 1 under H1.
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Simulation

For the simulation we compare the following tests

Anderson-Darling (AD) (based on a comparison between empirical and
theoretical cdf).

Tiku-Singh (TS) (based on the normalized spacings).

A test based on the sample skewness (ST).

Ozturk-Korukog (OK) (based on the comparison of two different parameter
estimators).

T
(1)
n with weight function w

(1)
a (t) = e−a|t| and tuning parameter

a ∈ {1, 2, 5}.
T

(2)
n with weight function w

(2)
a (t) = e−at2 and tuning parameter

a ∈ {1, 2, 5}.
The parameters λ and k are estimated with the maximum likelihood method.
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Simulation

Alt. AD TS ST OK T
(1)
n,1 T

(1)
n,2 T

(1)
n,5 T

(2)
n,1 T

(2)
n,2 T

(2)
n,5

W (1, 0.9) 5 6 6 5 5 4 5 5 5 5
W (1, 1.5) 6 5 5 5 5 6 5 5 6 5
W (1, 3) 6 5 5 5 5 5 5 5 5 5

W (1/4, 1) 5 5 5 5 6 6 6 6 5 5
Γ(8, 1) 25 45 38 38 16 24 31 25 31 35
Γ(2, 1) 10 15 11 11 11 9 7 6 4 7

Γ(0.2, 1) 48 19 56 60 31 24 19 0 0 0
LN(0, 0.5) 55 80 71 70 65 57 63 50 59 62
LN(0, 0.8) 55 79 72 68 62 55 65 44 57 66
LN(0, 1.2) 55 79 71 68 51 40 61 30 42 62

iΓ(3, 1) 92 99 97 95 92 94 93 94 93 92
iΓ(1.5, 1) 97 100 99 98 97 96 98 93 97 98

GG1 9 5 11 11 10 13 12 13 12 12
GG2 28 49 43 41 19 15 28 16 25 36

AddW 1 5 4 5 4 5 5 5 5 5 5
AddW 2 97 86 98 98 99 99 99 99 98 98
P(0.5, 2) 33 37 37 40 22 35 42 43 46 48

P(1.5, 2.5) 23 28 28 30 19 14 23 12 16 27
IG(1, 1) 80 96 90 85 66 82 84 85 86 84
IG(1, 2) 89 99 96 92 73 90 91 93 93 90

Table: Percentages of rejection (n = 50, 5000 replications, b = 500 bootstrap samples)
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Real data example

We apply the new tests to data of failure stresses of single carbon fibers (in
GPa). We investigate 4 different datasets (with respect to the fiber lengths
1mm, 10mm, 20mm and 50mm) with sample sizes between 57 and 70.

Failure stresses of single fibers are often associated with the so-called
weakest-link hypothesis (the strength of a fiber can be represented by the
minimum of independent strengths of sections).

1mm 10mm 20mm 50mm

T
(1)
n,5 0.189 0.013 0.215 0.228

T
(2)
n,5 0.180 0.019 0.219 0.218

Table: p-values of failure stresses of single carbon fibers
of the test statistics T

(1)
n,5 and T

(2)
n,5
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Thank you for your attention!
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