A categorical approach to partial group actions

Francisco Gabriel Klock Campos Vidal (Advisor: Mykola Khrypchenko)

SPP@ULB

This work was done with the financial support given by $\ensuremath{\mathsf{FAPESC}}$

Contents

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

- Motivations in the case of sets
- Induced partial actions and globalizations in the general case
- Some results on the globalizations of a partial action

Partial groups actions

A categorical approach to partial group actior

Francisco G. Klock C. V. (UFSC)

æ

fapesc

Outline

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions
- Induced partial actions and globalizations
 - Motivations in the case of sets
 - Induced partial actions and globalizations in the general case
 - Some results on the globalizations of a partial action

- Over the course of this presentation, we will assume G is a group with identity e, and C is a category with pullbacks.
- Whenever we are in the context of sets, we shall assume X and Y are sets. Otherwise, we shall assumed X and Y are objects in \mathscr{C} .

A partial action datum of G on X is a pair $({X_g}_{g\in G}, {\alpha_g}_{g\in G})$, such that

- For each $g \in G$, X_g is a subset of X;
- For each $g \in G$, α_g is a function $\alpha_g \colon X_{g^{-1}} \to X$.

A partial action [2] of G on X is a partial action datum ({X_g}_{g∈G}, {α_g}_{g∈G}) of G on X that satisfies the following axioms:
X_e = X and α_e = id_X;
α_g(X_{g⁻¹} ∩ X_h) ⊆ X_g ∩ X_{gh}, for all g, h ∈ G;
α_h ∘ α_g = α_{hg} on X_{g⁻¹} ∩ X_{(hg)⁻¹}, for all g, h ∈ G.

Let α be a global action of G on X, and consider the partial action datum $({X}_{g\in G}, {\alpha_g}_{g\in G})$ of G on X. This partial action datum is a partial action of G on X

Let $G = \mathbb{Z}$ and $X = \mathbb{N}$. Consider the partial action datum of \mathbb{Z} on \mathbb{N}

 $(\{X_z\}_{z\in\mathbb{Z}}, \{\alpha_z\}_{z\in\mathbb{Z}})$

where when $z \ge 0$,

 $X_{-z} = \mathbb{N}$ and $\alpha_z : X_{-z} \to X$ maps $x \in \mathbb{N}$ to x + z

and when z < 0,

 $X_{-z} = \{x \in \mathbb{N} : x \ge -z\}$ and $\alpha_z : X_{-z} \to X$ maps $x \in X_{-z}$ to x + z.

This partial action datum is a partial action of \mathbb{Z} on \mathbb{N} .

Outline

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions
- Induced partial actions and globalizations
 - Motivations in the case of sets
 - Induced partial actions and globalizations in the general case
 - Some results on the globalizations of a partial action

A **partial morphism** from X to Y is a triple (A, f, g), in which A is an object of \mathcal{C} , f is a monomorphism from A to X and g is a morphism from A to Y, as illustrated on the diagram

Given (A, f, g) and (B, h, k) partial morphisms from X to Y, a morphism from (A, f, g) to (B, h, k) is a morphism $\varphi \colon A \to B$ on \mathscr{C} such that the following diagram commutes.

With those morphisms, the class $\mathbf{Par}_{\mathscr{C}}(X, Y)$ of partial morphisms from X to Y form a category.

We shall denote by [A, f, g] the isomorphism class represented by (A, f, g) in **Par**_{\mathscr{C}}(X, Y):

$$[A,f,g] = \{(B,h,k) \in \operatorname{\mathsf{Par}}_{\mathscr{C}}(X,Y) : (B,h,k) \cong (A,f,g)\}.$$

And we shall denote by $\mathbf{par}_{\mathscr{C}}(X, Y)$ the set of isomorphism classes of partial morphisms from X to Y:

$$\mathsf{par}_{\mathscr{C}}(X,Y) = \{[A,f,g]: (A,f,g) \in \mathsf{Par}_{\mathscr{C}}(X,Y)\}$$

Composition of isomorphism classes of partial morphisms

Given $[A, f, g] \in \operatorname{par}_{\mathscr{C}}(X, Y)$ and $[B, h, k] \in \operatorname{par}_{\mathscr{C}}(Y, Z)$, the composition $[B, h, k] \bullet [A, f, g]$ of those isomorphism classes is given by the isomorphism class represented by the external partial morphism in the diagram

whose square is a pullback square. That is,

$$[B, h, k] \bullet [A, f, g] = [P, f \circ p, k \circ q].$$

We define the category $\operatorname{par}_{\mathscr{C}}$ to be the category whose objects are objects in \mathscr{C} and, given two objects X and Y in \mathscr{C} , the set of morphisms from X to Y is $\operatorname{par}_{\mathscr{C}}(X, Y)$

Proposition 1.5

Every isomorphism class $[A, f, g] \in \operatorname{par}_{\operatorname{Set}}(X, Y)$ has exactly one representative (B, ι, h) where $B \subseteq X$ and ι is the inclusion of B on X.

Thus, there is a bijection between $par_{Set}(X, Y)$ and the set of partial functions from X to Y.

Lemma 1.6 (Hu, Vercruysse, 2020 [4])

Let G be a group and X a set. There is a correspondence between

- (1) partial action data of G on X;
- (2) $\operatorname{par}_{\operatorname{Set}}(G \times X, X)$;

(3) functions from G to $par_{Set}(X, X)$.

Outline

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

- Motivations in the case of sets
- Induced partial actions and globalizations in the general case
- Some results on the globalizations of a partial action

A partial action datum of G on $X \in \mathscr{C}$ is a function from G to $par_{\mathscr{C}}(X, X)$.

Francisco G. Klock C. V. (UFSC) A categorical approach to partial group action

∃ →

apesc

A partial action datum $\alpha(g) = [X_{g^{-1}}, \iota_g, \alpha_g]$ of G on X is said to be a partial action of G on X if

- $(e) = [X, id_X, id_X];$
- 2 For all $g, h \in G$ there exists a morphism $X_{g^{-1}} \cap X_{(hg)^{-1}} \xrightarrow{\psi} X_g \cap X_{h^{-1}}$ such that the following diagram commutes

- Every partial action of a group G on a ring X corresponds to a partial action of G on the object X in the category of rings, but because we ask the subsets of X to be ideals and not subrings, the converse fails to be true.
- Thus, partial actions in this categorical sense generalize properly partial actions on rings.
- Similarly, partial actions in this categorical sense generalize properly partial actions studied in the literature over other structures.

A global action of G on $X \in \mathscr{C}$ is a group morphism $\alpha : G \to \operatorname{Aut} X$.

A global action α of G on X can be described as the partial action datum of G on X that maps $g \in G$ to $[X, id_X, \alpha(g)]$.

Any such partial action datum that comes from a global action is a partial action.

Inverse semigroups and partial actions

∃ →

Francisco G. Klock C. V. (UFSC) A categorical approach to partial group action

Outline

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

- Motivations in the case of sets
- Induced partial actions and globalizations in the general case
- Some results on the globalizations of a partial action

An **inverse semigroup** is a semigroup S such that for each $s \in S$ there exists a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

Francisco G. Klock C. V. (UFSC) A categorical approach to partial group action

apesc

Let X be a set. A **partial bijection** in X is a bijection between two subsets of X. The set of partial bijections in X is denoted by $\mathcal{I}(X)$.

We define a product between two partial bijections in X as their composition in the largest domain where it makes sense. That is, if φ and ψ are partial bijections in X, then

$$\mathsf{dom}(\varphi\psi) = \psi^{-1}(\mathsf{ran}(\psi) \cap \mathsf{dom}(\varphi))$$

and

$$\operatorname{ran}(\varphi\psi) = \varphi(\operatorname{ran}(\psi) \cap \operatorname{dom}(\varphi)).$$

With this product, $\mathcal{I}(X)$ is an inverse semigroup.

A partial action on a set can be equivalently defined in terms of partial bijections as follows:

Definition 2.3

A **partial action** of G on X is a family $\Theta = \{\theta_g\}_{g \in G}$ formed by partial bijections in X such that

$$\ \, { \ \, 0 } \ \ \, \theta_g: X_{g^{-1}} \to X_g \ \, { for each } g \in G$$

Theorem 2.4 (Exel, 1998 [3])

A function $\theta: G \to \mathcal{I}(X)$ corresponds to a partial action of G on X if, and only if,

•
$$\theta(e) = id_X$$

2
$$\theta(h)\theta(g)\theta(g^{-1}) = \theta(hg)\theta(g^{-1})$$
, for all $g, h \in G$.

Let G be a group. The **Exel's semigroup** constructed from G is the semigroup S(G) that is generated by the set $\{[g] : g \in G\}$, subject to the relations

$$[g^{-1}][g][h] = [g^{-1}][gh]$$

2
$$[g][h][h^{-1}] = [gh][h^{-1}]$$

•
$$[e][g] = [g]$$

for each $g, h \in G$, and in which e is the identity of G.

```
\mathcal{S}(G) is an inverse semigroup in which [g]^* = [g^{-1}].
```


Theorem 2.6 (Exel, 1998 [3])

There is a one-to-one correspondence between

- **1** partial actions of G on X
- 2 identity preserving semigroup morphisms from $\mathcal{S}(G)$ to $\mathcal{I}(X)$.

Outline

Partial groups actions

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions
- Induced partial actions and globalizations
 - Motivations in the case of sets
 - Induced partial actions and globalizations in the general case
 - Some results on the globalizations of a partial action

A **partial isomorphism** from X to Y is a partial morphism (A, f, g) from X to Y such that g is a monomorphism.

We shall denote by $\mathbf{iso}_{\mathscr{C}}$ the subcategory of $\mathbf{par}_{\mathscr{C}}$ whose morphisms are isomorphism classes represented by partial isomorphisms. We also shall denote by $\mathcal{I}(X)$ the set of endomorphisms of X in $\mathbf{iso}_{\mathscr{C}}$.

Proposition 2.8

Let $X \in \mathscr{C}$. Then $\mathcal{I}(X)$ is an inverse semigroup, in which

$$[A, f, g]^* = [A, g, f].$$

apesc

Proposition 2.9

Let α be a partial action of G on $X \in \mathscr{C}$. Then, $\alpha(g) \in \mathcal{I}(X)$ for all $g \in G$.

.∋...>

apesc

Theorem 2.10

A partial action datum α of G on X is a partial action if, and only if,

- $\alpha(G) \subseteq \mathcal{I}(X)$,
- $lpha(g^{-1})=lpha(g)^*$ for every $g\in {\sf G}$,
- $\alpha(e)$ is the identity of $\mathcal{I}(X)$,
- $\alpha(h) \bullet \alpha(g) \le \alpha(hg)$ for every $g, h \in G$.

Theorem 2.11

A partial action datum α of G on X is a partial action if, and only if,

- $\alpha(G) \subseteq \mathcal{I}(X)$,
- $\alpha(e)$ is the identity of $\mathcal{I}(X)$,

•
$$\alpha(h) \bullet \alpha(g) \bullet \alpha(g^{-1}) = \alpha(hg) \bullet \alpha(g^{-1})$$
 for all $g, h \in G$.

Theorem 2.12

Let G be a group and X an object of C. There is a correspondence between the sets of

- (1) partial actions of G on X;
- (2) identity preserving semigroup morphisms from $\mathcal{S}(G)$ to $\mathcal{I}(X)$.

Induced partial actions and globalizations

Francisco G. Klock C. V. (UFSC)

∃ →

May 16th, 2023

Outline

Partial groups

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

- Motivations in the case of sets
- Induced partial actions and globalizations in the general case
- Some results on the globalizations of a partial action

Given a global action α of G on X, and S a subset of X, consider the partial action datum

$$(\{S_g\}_{g\in G},\{\beta_g\}_{g\in G}),$$

where, for each $g \in G$,

$$S_{g^{-1}} = S \cap \alpha_g^{-1}(S)$$

and $\beta_g : S_{g^{-1}} \to S$ is given by $\beta_g(s) = \alpha_g(s)$ for each $s \in S_{g^{-1}}$. This partial action datum is a partial action of G on S, which is called the **induced partial action** of α on S.

A **globalization** for a partial action β of G on S is a global action α of G on a set X containing S such that β is the induced partial action of α on S.

Given two partial action data $\alpha = (\{X_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ of G on X and $\beta = (\{Y_g\}_{g \in G}, \{\beta_g\}_{g \in G})$ of G on Y, a **partial action datum morphism**, or, in short, **datum morphism**, from α to β is a function $f : X \to Y$ such that

May 16th, 2023

•
$$f(X_g) \subseteq Y_g$$
 for all $g \in G$
• $f \circ \alpha_g = \beta_g \circ f$ on $X_{g^{-1}}$ for all $g \in G$.

The category G-Datum, or the category of partial action data of G on sets, is the category whose objects are partial action data of G on sets, and whose morphisms are datum morphisms, in which the composition of two morphisms is given by the usual composition of functions.

The category G-pAct, or the category of partial actions of G on sets, is the full subcategory of G-Datum whose objects are the partial actions of G on sets.

Definition 3.5

The category G-Act, or the category of (global) actions of G on sets, is the full subcategory of G-Datum whose objects are the global actions of G on sets.

Theorem 3.6 (Abadie, 2003 [1])

Let β be a partial action of G on a set S. Then, β has a globalization α of G on a set X such that the inclusion of S on X is a datum morphism between β and α that is a reflection of β in G-Act.

Such a globalization is called the **enveloping action** of β .

Outline

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

Motivations in the case of sets

Induced partial actions and globalizations in the general case

Some results on the globalizations of a partial action

Let α be a global action of G on an object $X \in \mathscr{C}$ and $\iota : S \to X$ be a monomorphism in \mathscr{C} . Let $\beta(g) = [S_{g^{-1}}, \iota_g, \beta_g]$ be the partial action datum of G on S where for each $g \in G$ the following diagram is a pullback.

 β is a partial action of G on S, called the **induced partial action** of α on S (via the monomorphism ι).

A **globalization** for a partial action β is a pair (α, ι) in which α is a global action of G on an object X in \mathscr{C} and ι is a monomorphism from S to X such that β is the induced partial action of α on S via ι .

May 16th, 2023

Let α and β be partial action data of G on X and Y, with, say, $\alpha(g) = [X_{g^{-1}}, \iota_g, \alpha_g]$ and $\beta(g) = [Y_{g^{-1}}, \kappa_g, \beta_g]$ for all $g \in G$. A **partial action datum morphism**, or **datum morphism**, between α and β is a morphism $f : X \to Y$ such that for all $g \in G$ there is a morphism $f_g : X_{g^{-1}} \to Y_{g^{-1}}$ such that the following diagram commutes:

fapesc

The category *G*-Datum_{\mathscr{C}}, or the category of partial action data of *G* on objects in \mathscr{C} , is the category whose objects are partial action data of *G* on objects in \mathscr{C} , and whose morphisms are datum morphisms, in which the composition of two morphisms is given by the usual composition of the morphisms in \mathscr{C} .

The category G-pAct $_{\mathscr{C}}$, or the category of partial actions of G on objects in \mathscr{C} , is the full subcategory of G-Datum whose objects are the partial actions of G on objects in \mathscr{C} .

Definition 3.12

The category G-Act $_{\mathscr{C}}$, or the category of (global) actions of G on objects in \mathscr{C} , is the full subcategory of G-Datum whose objects are the global actions of G on objects in \mathscr{C} .

A universal globalization for a partial action β is a pair (α, ι) such that

- (α, ι) is a globalization for β .
- *ι* is a datum morphism between *β* and *α* that is a reflection of *β* in *G*-Act_{*C*}.

Outline

Partial groups action

- Partial group actions on sets
- Partial morphisms
- Partial group actions on objects in categories with pullbacks

Inverse semigroups and partial actions

- Motivations in the case of sets
- Inverse semigroups and partial actions

Induced partial actions and globalizations

- Motivations in the case of sets
- Induced partial actions and globalizations in the general case
- Some results on the globalizations of a partial action

For the remainder of this presentation, β will be a partial action of G on an object S in C, in which β(g) = [S_{g⁻¹}, ι_g, β_g] for all g ∈ G.

Universal globalizations and globalizations

Theorem 3.14

Assume β has a reflection $\iota : \beta \to \alpha$ in G-Act_{\mathscr{C}}. Then, the following are equivalent:

- β has a universal globalization,
- β has a globalization,
- For each $g \in G$ the diagram

is a pullback diagram in \mathscr{C} .

fapesc

Theorem (Continuation of Theorem 3.6)

In this case, (α, ι) is a universal globalization for β .

Francisco G. Klock C. V. (UFSC) A categorical approach to partial group action

Consider the category I whose class of objects is the set $(G \times G) \cup G$, in which for all $g, h \in G$ there is a single morphism between (g, h) and g, and between (g, h) and h, and there are no other non trivial morphisms, as illustrated:

Given the partial action β , let F be the functor from I to \mathscr{C} that sends $(g,h) \in (G \times G) \subseteq I$ to $S_{g^{-1}h}$ and $g \in G \subseteq I$ to S, and, given $g,h \in G$, that sends the unique morphism between (g, h) and g to $S_{g^{-1}h} \xrightarrow{\iota_{h^{-1}g}} S$, and the unique morphism between (g, h) and h to $S_{g^{-1}h} \xrightarrow{\beta_{h^{-1}g}} S$, as illustrated:

Theorem 3.15

Assume the colimit $\eta : \mathscr{F} \to \Delta(K)$ (in which $\Delta(K)$ is the functor that is constant and equal to $K \in \mathscr{C}$) of the functor F exists. Then, β has a reflection in G-Act $_{\mathscr{C}}$.

In this case, there exists a global action α of G on K constructed from this colimit such that η_e is a datum morphism between β and α that is a reflection of β in G-Act_{\mathscr{C}}.

Given the partial action β , assume the coproducts $\coprod_{g\in G} S$ and $\coprod_{(g,h)\in G\times G} S_{g^{-1}h}$ exist in \mathscr{C} , in which the associated inclusion morphisms are, respectively, u_g for $g\in G$ and $u_{(g,h)}$ for $(g,h)\in G\times G$. Consider the morphisms

$$p = \coprod_{(g,h)\in G\times G} S_{g^{-1}h} \xrightarrow{\coprod (u_g \circ \iota_{h^{-1}g})} \coprod_{g\in G} S$$
$$q = \coprod_{(g,h)\in G\times G} S_{g^{-1}h} \xrightarrow{\coprod (u_h \circ \beta_{h^{-1}g})} \coprod_{g\in G} S$$

In this case, a coequalizer for p and q induces a colimit for the functor F associated with β .

Corollary 3.16

Assume the coproducts $\coprod_{g\in G} S$ and $\coprod_{(g,h)\in G\times G} S_{g^{-1}h}$ exist \mathscr{C} , and suppose that p and q have a coequalizer $\coprod_{g\in G} S \xrightarrow{c} K$. Then, β has a reflection in G-**Act** $_{\mathscr{C}}$. In this case, there exists a global action α of G on K constructed from this

coequalizer such that $c \circ u_e$ is a datum morphism between β and α that is a reflection of β in G-Act_{\mathscr{C}}.

Existence of a reflection - coproducts and coequalizer in $G-Act_{\mathscr{C}}$

- Given the partial action β , we keep the assumption that the coproducts $\coprod_{g \in G} S$ and $\coprod_{(g,h) \in G \times G} S_{g^{-1}h}$ exist in \mathscr{C} .
- There are certain global actions ψ and φ of G acting, respectively, on $\coprod_{g \in G} S$ and $\coprod_{(g,h) \in G \times G} S_{g^{-1}h}$, which are induced naturally due to the structure of G and the objects being coproducts.
- The morphisms p and q are, in fact, datum morphisms from φ to ψ .

Existence of a reflection - coproducts and coequalizer in $G\text{-}\mathbf{Act}_{\mathscr{C}}$

Theorem 3.17

Assume the coproducts $\coprod_{g\in G} S \in \coprod_{(g,h)\in G\times G} S_{g^{-1}h}$ exist \mathscr{C} . Then, β has a reflection in G-Act $_{\mathscr{C}}$ if, and only if, p and q have a coequalizer $\psi \xrightarrow{c} \alpha$ in G-Act $_{\mathscr{C}}$. In this case, $c \circ u_e$ is a datum morphism between β and α that is a reflection of β in G-Act $_{\mathscr{C}}$.

Francisco G. Klock C. V. (UFSC) A categorical approach to partial group actior

< □ > < □ > < □ > < □ > < □ >

æ

()) fapesc

[1] F. Abadie.

Enveloping actions and Takai duality for partial actions.

J. Funct. Anal., 197(1):14-67, 2003.

[2] R. Exel.

Circle actions on C^* -algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence.

J. Funct. Anal., 122(2):361-401, 1994.

[3] R. Exel.

Partial actions of groups and actions of inverse semigroups. Proceedings of the American Mathematical Society, 126(12):3481–3494, 1998.

[4] J. Hu and J. Vercruysse.

Geometrically partial actions.

Trans. Am. Math. Soc., 373(6):4085–4143, 2020.

[5] P. Saracco and J. Vercruysse.

Globalization for geometric partial comodules.

J. Algebra, 602:37–59, 2022.

[6] P. Saracco and J. Vercruysse.

On the globalization of geometric partial (co)modules in the categories of topological spaces and algebras.

Semigroup Forum, 105(2):534–550, 2022.

