Wasserstein bounds through Stein's method with bespoke derivatives

Germain Gilles and Yvik Swan

Université libre de Bruxelles

October 17, 2023

The Wasserstein distance between the laws of two $\operatorname{rrvs} X$ and Z is

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]|
$$

where $\operatorname{Lip}(1)$ is the set of all Lipschitz functions on \mathbb{R} (a.k.a. Kantorovitch or L^{1} distance).

The Wasserstein distance between the laws of two $\operatorname{rrvs} X$ and Z is

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]|
$$

where $\operatorname{Lip}(1)$ is the set of all Lipschitz functions on \mathbb{R} (a.k.a. Kantorovitch or L^{1} distance).

We are interested in the case where

- X is discrete:

$$
\mathbb{P}^{X}[A]=\sum_{x_{i} \in A} p_{i}
$$

with $I=\{0, \ldots, \ell\}$ or $I=\mathbb{N}$, and $x_{i-1}<x_{i}$ for all $i \in I \backslash\{0\}$;

The Wasserstein distance between the laws of two rrvs X and Z is

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]|
$$

where $\operatorname{Lip}(1)$ is the set of all Lipschitz functions on \mathbb{R} (a.k.a. Kantorovitch or L^{1} distance).

We are interested in the case where

- X is discrete:

$$
\mathbb{P}^{X}[A]=\sum_{x_{i} \in A} p_{i}
$$

with $I=\{0, \ldots, \ell\}$ or $I=\mathbb{N}$, and $x_{i-1}<x_{i}$ for all $i \in I \backslash\{0\}$;

- Z is continuous:

$$
\mathbb{P}^{Z}[A]=\int_{A} q(x) d x
$$

with $q: \mathbb{R} \rightarrow \mathbb{R}^{+}$continuously differentiable with support $(a, b) \subseteq \mathbb{R}$.

The Wasserstein distance between the laws of two rrvs X and Z is

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]|
$$

where $\operatorname{Lip}(1)$ is the set of all Lipschitz functions on \mathbb{R} (a.k.a. Kantorovitch or L^{1} distance).

We are interested in the case where

- X is discrete:

$$
\mathbb{P}^{X}[A]=\sum_{x_{i} \in A} p_{i}
$$

with $I=\{0, \ldots, \ell\}$ or $I=\mathbb{N}$, and $x_{i-1}<x_{i}$ for all $i \in I \backslash\{0\}$;

- Z is continuous:

$$
\mathbb{P}^{Z}[A]=\int_{A} q(x) d x
$$

with $q: \mathbb{R} \rightarrow \mathbb{R}^{+}$continuously differentiable with support $(a, b) \subseteq \mathbb{R}$.
We assume (i) $\mathbb{E}|Z|=\int_{a}^{b}|x| q(x) d x<\infty$ and (ii) $x_{i} \in \overline{(a, b)}$ for all $i \in I$.

Example (Goldstein 2007)

Let $Y_{n} \sim \operatorname{Bin}(n, t)$. Then with

$$
X=\frac{Y_{n}-n t}{\sqrt{n t(1-t)}} \text { and } Z \sim \mathcal{N}(0,1)
$$

it holds that

$$
W_{1}(X, Z) \leq \frac{1}{\sqrt{n}} \frac{t^{2}+(1-t)^{2}}{\sqrt{t(1-t)}}
$$

Example (Goldstein 2007)

Let $Y_{n} \sim \operatorname{Bin}(n, t)$. Then with

$$
X=\frac{Y_{n}-n t}{\sqrt{n t(1-t)}} \text { and } Z \sim \mathcal{N}(0,1)
$$

it holds that

$$
W_{1}(X, Z) \leq \frac{1}{\sqrt{n}} \frac{t^{2}+(1-t)^{2}}{\sqrt{t(1-t)}}
$$

Example (Goldstein and Reinert 2013)

Let Y_{n} be distributed according to the Pólya-Eggenberger distribution with parameters $\alpha>0, \beta>0$, and $m \geq 1$. Then with

$$
X=\frac{Y_{n}}{n} \text { and } Z \sim \operatorname{Beta}(\alpha / m, \beta / m)
$$

it holds that

$$
W_{1}(X, Z) \leq \frac{C(\alpha, \beta, m)}{n}
$$

with $C(\alpha, \beta, m)$ an explicit function of the parameters.

Theorem (GS, to appear)
Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$.

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

where

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

where

- $\delta_{i}^{+}=\delta^{+}\left(x_{i}\right)=x_{i+1}-x_{i}$ and $\delta_{i}^{-}=\delta^{-}\left(x_{i}\right)=x_{i}-x_{i-1}$ for all $i \in I$;

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

where

- $\delta_{i}^{+}=\delta^{+}\left(x_{i}\right)=x_{i+1}-x_{i}$ and $\delta_{i}^{-}=\delta^{-}\left(x_{i}\right)=x_{i}-x_{i-1}$ for all $i \in I$;
- $C_{q}(w)$ is an absolute constant depending only on q and w;

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

where

- $\delta_{i}^{+}=\delta^{+}\left(x_{i}\right)=x_{i+1}-x_{i}$ and $\delta_{i}^{-}=\delta^{-}\left(x_{i}\right)=x_{i}-x_{i-1}$ for all $i \in I$;
- $C_{q}(w)$ is an absolute constant depending only on q and w;
- $\left(\pi_{i}\right)_{i \in I}:=\left(\pi\left(x_{i}\right)\right)_{i \in I}$ is a sequence of weights given by

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j} . \tag{3}
\end{equation*}
$$

Theorem (GS, to appear)

Let $w: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable over (a, b), and define $s(x)=(q(x) w(x))^{\prime} / q(x)$ for all $x \in(a, b)$. Suppose furthermore that

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

where

- $\delta_{i}^{+}=\delta^{+}\left(x_{i}\right)=x_{i+1}-x_{i}$ and $\delta_{i}^{-}=\delta^{-}\left(x_{i}\right)=x_{i}-x_{i-1}$ for all $i \in I$;
- $C_{q}(w)$ is an absolute constant depending only on q and w;
- $\left(\pi_{i}\right)_{i \in I}:=\left(\pi\left(x_{i}\right)\right)_{i \in I}$ is a sequence of weights given by

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j} \tag{3}
\end{equation*}
$$

Corollary

If $x_{i}-x_{i-1}=\delta>0$ for all $i \geq 1 \in I$ then

$$
W_{1}(X, Z) \leq C_{q}(w) \delta \mathbb{E}[|\pi(X)|+|1-\pi(X)|] .
$$

$$
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}
$$

$$
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}
$$

- Uniform
- Binomial(n,t)
- Hypergeometric($n, n, 2 n+1$)

Figure: The coefficients π_{i} when $Z \sim N(0,1)(n=15)$.

Several questions:

- Where does the bound (2) come from?
- How to choose the function w ?
- What do we know about the constants $C_{q}(w)$?
- What does condition (1) mean?
- What can we say about the weights π from (3)?

Question 1: Where does the bound

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

come from?

Question 1: Where does the bound

$$
\begin{equation*}
W_{1}(X, Z) \leq C_{q}(w) \mathbb{E}\left[|\pi(X)| \delta^{+}(X)+|1-\pi(X)| \delta^{-}(X)\right] \tag{2}
\end{equation*}
$$

come from?
Answer: A new version of Stein's method.

Definition

Stein operator for Z : Fix w some function. Define

$$
\mathcal{T}_{q, w} f(x)=w(x) f^{\prime}(x)+\frac{(w(x) q(x))^{\prime}}{q(x)} f(x)=w(x) f^{\prime}(x)+s(x) f(x)
$$

Definition

Stein operator for Z : Fix w some function. Define

$$
\mathcal{T}_{q, w} f(x)=w(x) f^{\prime}(x)+\frac{(w(x) q(x))^{\prime}}{q(x)} f(x)=w(x) f^{\prime}(x)+s(x) f(x)
$$

Definition

Stein operator for X : Fix $\pi=\left(\pi_{i}\right)_{i \in I}$ a sequence of weights. Define

$$
\mathcal{T}_{p, w, \pi} f\left(x_{i}\right)=w\left(x_{i}\right) \Delta^{\pi} f\left(x_{i}\right)-\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}} f\left(x_{i}\right), \quad i \in I
$$

where

$$
\Delta^{\pi} f\left(x_{i}\right)=\pi_{i} \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}+\left(1-\pi_{i}\right) \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}, \quad i \in I,
$$

Inspired by [Yang et al. 2018].

Definition

Stein operator for Z : Fix w some function. Define

$$
\mathcal{T}_{q, w} f(x)=w(x) f^{\prime}(x)+\frac{(w(x) q(x))^{\prime}}{q(x)} f(x)=w(x) f^{\prime}(x)+s(x) f(x)
$$

Definition

Stein operator for X : Fix $\pi=\left(\pi_{i}\right)_{i \in \prime}$ a sequence of weights. Define

$$
\mathcal{T}_{p, w, \pi} f\left(x_{i}\right)=w\left(x_{i}\right) \Delta^{\pi} f\left(x_{i}\right)-\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}} f\left(x_{i}\right), \quad i \in I
$$

where

$$
\Delta^{\pi} f\left(x_{i}\right)=\pi_{i} \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}+\left(1-\pi_{i}\right) \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}, \quad i \in I
$$

Inspired by [Yang et al. 2018].

We suggest to use Stein's method to evaluate $W_{1}(X, Z)$ through comparison of $\mathcal{T}_{q, w}$ with $\mathcal{T}_{p, w, \pi}$.

Stein's method of comparison of operators in a nutshell
Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Stein's method of comparison of operators in a nutshell
Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x) .
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

Stein's method of comparison of operators in a nutshell
Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x) .
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]|
$$

Stein's method of comparison of operators in a nutshell
Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
\begin{aligned}
W_{1}(X, Z) & =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)-\mathbb{E} h(Z)]|
\end{aligned}
$$

Stein's method of comparison of operators in a nutshell
Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
\begin{aligned}
W_{1}(X, Z) & =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)-\mathbb{E} h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]\right|
\end{aligned}
$$

Stein's method of comparison of operators in a nutshell

Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
\begin{aligned}
W_{1}(X, Z) & =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)-\mathbb{E} h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]\right| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]-\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]\right|
\end{aligned}
$$

Stein's method of comparison of operators in a nutshell

Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
\begin{aligned}
W_{1}(X, Z) & =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)-\mathbb{E} h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]\right| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]-\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]\right| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\left(\mathcal{T}_{q, w}-\mathcal{T}_{p, w, \pi}\right) f_{h}(X)\right]\right|
\end{aligned}
$$

Stein's method of comparison of operators in a nutshell

Let $h \in \operatorname{Lip}(1)$ and f_{h} be solution to

$$
h(x)-\mathbb{E}[h(Z)]=\mathcal{T}_{q, w} f_{h}(x)
$$

Then $\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]=0$ for all h and

$$
\begin{aligned}
W_{1}(X, Z) & =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)]-\mathbb{E}[h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}|\mathbb{E}[h(X)-\mathbb{E} h(Z)]| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]\right| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\mathcal{T}_{q, w} f_{h}(X)\right]-\mathbb{E}\left[\mathcal{T}_{p, w, \pi} f_{h}(X)\right]\right| \\
& =\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[\left(\mathcal{T}_{q, w}-\mathcal{T}_{p, w, \pi}\right) f_{h}(X)\right]\right|
\end{aligned}
$$

Hence comparing $\mathcal{T}_{q, w}$ with $\mathcal{T}_{p, w, \pi}$ directly translates into Wasserstein bounds.

This brings

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[w(X)\left(f_{h}^{\prime}(X)-\Delta^{\pi} f_{h}(X)\right)+\left(s(X)+\frac{\left(\Delta^{\pi}\right)^{t}(w p)}{p}(X)\right) f_{h}(X)\right]\right| .
$$

This brings

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[w(X)\left(f_{h}^{\prime}(X)-\Delta^{\pi} f_{h}(X)\right)+\left(s(X)+\frac{\left(\Delta^{\pi}\right)^{t}(w p)}{p}(X)\right) f_{h}(X)\right]\right| .
$$

From here:

- choose $\pi=\pi(p, q, w)$ to cancel out the second summand so that

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[w(X)\left(f_{h}^{\prime}(X)-\Delta^{\pi} f_{h}(X)\right)\right]\right|
$$

This brings
$W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[w(X)\left(f_{h}^{\prime}(X)-\Delta^{\pi} f_{h}(X)\right)+\left(s(X)+\frac{\left(\Delta^{\pi}\right)^{t}(w p)}{p}(X)\right) f_{h}(X)\right]\right|$.

From here:

- choose $\pi=\pi(p, q, w)$ to cancel out the second summand so that

$$
W_{1}(X, Z)=\sup _{h \in \operatorname{Lip}(1)}\left|\mathbb{E}\left[w(X)\left(f_{h}^{\prime}(X)-\Delta^{\pi} f_{h}(X)\right)\right]\right|
$$

- Wiggling out the functions f_{h} from the expression leads to (2) with

$$
C_{q}(w)=\frac{1}{2}\left(\sup _{h \in \operatorname{Lip}(1)}\left|\left(f_{h}^{\prime} w\right)^{\prime}\right|_{\infty}+\sup _{h \in \operatorname{Lip}(1)}\left|f_{h}^{\prime}\right|_{\infty}\left|w^{\prime}\right|_{\infty}\right) .
$$

Question 2: How to choose the function w and what do we know about the constants $C_{q}(w) ?$

Question 2: How to choose the function w and what do we know about the constants $C_{q}(w) ?$
Partial answer: The Stein kernel is a good choice of w for "simple" $Z \sim q$.

Definition

The Stein kernel for q is

$$
\tau_{q}(x)=\frac{1}{q(x)} \int_{x}^{b}(u-\mathbb{E}[Z]) q(u) d u
$$

a.k.a. the solution to

$$
\frac{\left(\tau_{q}(x) q(x)\right)^{\prime}}{q(x)}=\mathbb{E}[Z]-x
$$

for all $x \in(a, b)$.

Definition

The Stein kernel for q is

$$
\tau_{q}(x)=\frac{1}{q(x)} \int_{x}^{b}(u-\mathbb{E}[Z]) q(u) d u
$$

a.k.a. the solution to

$$
\frac{\left(\tau_{q}(x) q(x)\right)^{\prime}}{q(x)}=\mathbb{E}[Z]-x
$$

for all $x \in(a, b)$.

The constants $C_{q}\left(\tau_{q}\right)$ can (often) be computed explicitly.

Definition

The Stein kernel for q is

$$
\tau_{q}(x)=\frac{1}{q(x)} \int_{x}^{b}(u-\mathbb{E}[Z]) q(u) d u
$$

a.k.a. the solution to

$$
\frac{\left(\tau_{q}(x) q(x)\right)^{\prime}}{q(x)}=\mathbb{E}[Z]-x
$$

for all $x \in(a, b)$.

The constants $C_{q}\left(\tau_{q}\right)$ can (often) be computed explicitly.

Example

- If $Z \sim \mathcal{N}(0,1)$ then $\tau_{q}(x)=1$ and $C_{q}\left(\tau_{q}\right)=1$.

Definition

The Stein kernel for q is

$$
\tau_{q}(x)=\frac{1}{q(x)} \int_{x}^{b}(u-\mathbb{E}[Z]) q(u) d u
$$

a.k.a. the solution to

$$
\frac{\left(\tau_{q}(x) q(x)\right)^{\prime}}{q(x)}=\mathbb{E}[Z]-x
$$

for all $x \in(a, b)$.

The constants $C_{q}\left(\tau_{q}\right)$ can (often) be computed explicitly.

Example

- If $Z \sim \mathcal{N}(0,1)$ then $\tau_{q}(x)=1$ and $C_{q}\left(\tau_{q}\right)=1$.
- If $Z \sim \operatorname{Exp}(\lambda)$ then $\tau_{q}(x)=x / \lambda$ and $C_{q}\left(\tau_{q}\right)=3 / 2$.

Definition

The Stein kernel for q is

$$
\tau_{q}(x)=\frac{1}{q(x)} \int_{x}^{b}(u-\mathbb{E}[Z]) q(u) d u
$$

a.k.a. the solution to

$$
\frac{\left(\tau_{q}(x) q(x)\right)^{\prime}}{q(x)}=\mathbb{E}[Z]-x
$$

for all $x \in(a, b)$.

The constants $C_{q}\left(\tau_{q}\right)$ can (often) be computed explicitly.

Example

- If $Z \sim \mathcal{N}(0,1)$ then $\tau_{q}(x)=1$ and $C_{q}\left(\tau_{q}\right)=1$.
- If $Z \sim \operatorname{Exp}(\lambda)$ then $\tau_{q}(x)=x / \lambda$ and $C_{q}\left(\tau_{q}\right)=3 / 2$.
- If $Z \sim \operatorname{Beta}(\alpha, \beta)$ then $\tau_{q}(x)=x(1-x) /(\alpha+\beta)$ and an explicit bound on $C_{q}\left(\tau_{q}\right)$ is known.

Question 3: What can we say about the weights (3) and what does condition (1) mean?

Question 3: What can we say about the weights (3) and what does condition (1) mean? Partial answer: Condition (1) is "just" a standardisation; the weights (3) are more mysterious.

Let w be given and $s=(w q)^{\prime} / q$. We want π to satisfy

$$
\begin{equation*}
\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}}=-s\left(x_{i}\right), \text { for all } i \in I \tag{4}
\end{equation*}
$$

Let w be given and $s=(w q)^{\prime} / q$. We want π to satisfy

$$
\begin{equation*}
\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}}=-s\left(x_{i}\right), \text { for all } i \in I \tag{4}
\end{equation*}
$$

Theorem (GS, to appear)

Recall

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}, \quad i \in I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Let w be given and $s=(w q)^{\prime} / q$. We want π to satisfy

$$
\begin{equation*}
\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}}=-s\left(x_{i}\right), \text { for all } i \in I \tag{4}
\end{equation*}
$$

Theorem (GS, to appear)

Recall

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}, \quad i \in I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

- If I is finite the weights (3) satisfy (4) if and only if (1) holds.

Let w be given and $s=(w q)^{\prime} / q$. We want π to satisfy

$$
\begin{equation*}
\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}}=-s\left(x_{i}\right), \text { for all } i \in I \tag{4}
\end{equation*}
$$

Theorem (GS, to appear)

Recall

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}, \quad i \in I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

- If I is finite the weights (3) satisfy (4) if and only if (1) holds.
- If $I=\mathbb{N}$ the weights (3) satisfy (4), and $\pi w \in L^{1}(p)$ only if (1) holds.

Let w be given and $s=(w q)^{\prime} / q$. We want π to satisfy

$$
\begin{equation*}
\frac{\left(\left(\Delta^{\pi}\right)^{t}(w p)\right)\left(x_{i}\right)}{p_{i}}=-s\left(x_{i}\right), \text { for all } i \in I \tag{4}
\end{equation*}
$$

Theorem (GS, to appear)

Recall

$$
\begin{equation*}
\pi_{i}=\frac{1}{p_{i} w\left(x_{i}\right)} \sum_{j=0}^{i}\left(\left(x_{j}-x_{i}\right) s\left(x_{j}\right)+w\left(x_{j}\right)\right) p_{j}, \quad i \in I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}[s(X)]=0 \quad \text { and } \quad \mathbb{E}[X s(X)+w(X)]=0 . \tag{1}
\end{equation*}
$$

Then

- If I is finite the weights (3) satisfy (4) if and only if (1) holds.
- If $I=\mathbb{N}$ the weights (3) satisfy (4), and $\pi w \in L^{1}(p)$ only if (1) holds.

Condition (1) further simplifies if q is integrated pearson, i.e. if its Stein kernel is a 2d degree polynomial (normal, beta, gamma, student, ...), and if $w=\tau_{q}$ to read:

$$
\mathbb{E}[X]=\mathbb{E}[Z] \text { and } \operatorname{Var}[X]=\operatorname{Var}[Z] .
$$

Example

Let $Y \sim \operatorname{Bin}(n, t)$ and $X=(Y-n t) / \sqrt{n t(1-t)}$. Let $Z \sim \mathcal{N}(0,1)$ and $w(x)=1$. Then

$$
\pi_{i}=1-i / n
$$

for $i=0, \ldots, n$. Note how $\pi_{i} \in[0,1]$ for all $i=0, \ldots, n$.

Example

Let $Y \sim \operatorname{Bin}(n, t)$ and $X=(Y-n t) / \sqrt{n t(1-t)}$. Let $Z \sim \mathcal{N}(0,1)$ and $w(x)=1$. Then

$$
\pi_{i}=1-i / n
$$

for $i=0, \ldots, n$. Note how $\pi_{i} \in[0,1]$ for all $i=0, \ldots, n$.

Example

Let $Y \sim \operatorname{NBin}(\mathrm{n}, \mathrm{t})$ and $X=(Y-n(1-t) / t) / \sqrt{n(1-t) / t^{2}}$. Let $Z \sim \mathcal{N}(0,1)$ and $w(x)=1$. Then

$$
\pi_{i}=1+i / n
$$

for all $i \geq 0$. Note how $\pi_{i} \geq 1$ for all $i \geq 0$.

Example

Let $Y \sim \operatorname{Bin}(n, t)$ and $X=(Y-n t) / \sqrt{n t(1-t)}$. Let $Z \sim \mathcal{N}(0,1)$ and $w(x)=1$. Then

$$
\pi_{i}=1-i / n
$$

for $i=0, \ldots, n$. Note how $\pi_{i} \in[0,1]$ for all $i=0, \ldots, n$.

Example

Let $Y \sim \operatorname{NBin}(\mathrm{n}, \mathrm{t})$ and $X=(Y-n(1-t) / t) / \sqrt{n(1-t) / t^{2}}$. Let $Z \sim \mathcal{N}(0,1)$ and $w(x)=1$. Then

$$
\pi_{i}=1+i / n
$$

for all $i \geq 0$. Note how $\pi_{i} \geq 1$ for all $i \geq 0$.

Example

In the Polya vs beta case, we have

$$
\pi_{i}=\frac{(i+A)(-i+n)(B(B+n-\sqrt{n(A+B+n)})+A(B-n+\sqrt{n(A+B+n)}))}{(A(-i+n)+B(-i+\sqrt{n(A+B+n)}))(B i+A(i-n+\sqrt{n(A+B+n)})} .
$$

for $i=0, \ldots, n$, where $A=\alpha / m$ and $B=\beta / m$. We can show that $\pi_{i} \in[0,1]$.

Example

Consider the uniform measure on the set of the $\binom{n}{n / 2}$ eigenvalues of the Bernoulli-Laplace Markov chain appearing in proportion to their multiplicities. Let Y be a random variable chosen from this distribution. Set

$$
X=\frac{n}{2} Y+1 \text { and } Z \sim \operatorname{Exp}(1)
$$

Fix $w(x)=x$. Then $C_{q}(w)=\frac{3}{2}, \pi_{i}=\frac{(2 n-i)(i+1)}{2 n(1+2 i)} \in[0,1]$ so that

$$
W_{1}(X, Z) \leq \frac{5}{\sqrt{n}} .
$$

See also [Chatterjee and Shao 2011] for a constant equal to 12.

Example

Consider the uniform measure on the set of the $\binom{n}{n / 2}$ eigenvalues of the Bernoulli-Laplace Markov chain appearing in proportion to their multiplicities. Let Y be a random variable chosen from this distribution. Set

$$
X=\frac{n}{2} Y+1 \text { and } Z \sim \operatorname{Exp}(1)
$$

Fix $w(x)=x$. Then $C_{q}(w)=\frac{3}{2}, \pi_{i}=\frac{(2 n-i)(i+1)}{2 n(1+2 i)} \in[0,1]$ so that

$$
W_{1}(X, Z) \leq \frac{5}{\sqrt{n}}
$$

See also [Chatterjee and Shao 2011] for a constant equal to 12.

Example

Let X have the stationary distribution of an $M / M / n$ queuing system with rates $\lambda, \mu>0$ with $\lambda<\mu n$. Let Z be a continuous variable having the stationary distribution of a suitable piecewise Ornstein-Uhlenbeck process. Then [a slightly more complicated version of our theorem] gives

$$
W_{1}\left(\sqrt{\frac{\mu}{\lambda}}\left(X-\frac{\lambda}{\mu}\right), Z\right) \leq 31 \sqrt{\frac{\mu}{\lambda}} .
$$

See also [Braverman et al. 2017] for constant equal to 205.

Example (Hypergeometric vs normal)

Let Y be the number of marked balls in a sample of r balls taken from an urn with N balls, n of which are marked; Y is a hypergeometric random variable with mean $\mu=r n / N$ and variance $\sigma^{2}=n r(N-r)(N-n) /\left((N-1) N^{2}\right)$. Set

$$
X=(Y-\mu) / \sigma \text { and } Z \sim \mathcal{N}(0,1) .
$$

Fix $w=1$. Then

$$
\delta=1 / \sigma, \quad C_{q}(w)=1
$$

and

$$
\pi_{i}=\frac{(n-i)(r-i)(N i+(N-n)(N-r))}{n r(N-n)(N-r)} \in[0,1]
$$

so that

$$
W_{1}(X, Z) \leq \frac{1}{\sigma}=\frac{N \sqrt{N-1}}{\sqrt{n r(N-r)(N-n)}}
$$

An example that doesn't work (for the moment): Normal approximation of intrinsic volumes.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.
- We do not need the π to be explicit. We have identified conditions under which $\left(\pi_{i}\right)_{i \in I} \in[0,1]$ for all i; these conditions are not transparent and (probably) not optimal.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.
- We do not need the π to be explicit. We have identified conditions under which $\left(\pi_{i}\right)_{i \in I} \in[0,1]$ for all i; these conditions are not transparent and (probably) not optimal.
- Whenever our method works, our constants are very good.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.
- We do not need the π to be explicit. We have identified conditions under which $\left(\pi_{i}\right)_{i \in I} \in[0,1]$ for all i; these conditions are not transparent and (probably) not optimal.
- Whenever our method works, our constants are very good.

To do:

- More examples.

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.
- We do not need the π to be explicit. We have identified conditions under which $\left(\pi_{i}\right)_{i \in I} \in[0,1]$ for all i; these conditions are not transparent and (probably) not optimal.
- Whenever our method works, our constants are very good.

To do:

- More examples.
- What happens in other distances (e.g. Kolmogorov)?

Some facts:

- The weights can be negative, larger than 1 , monotone or not, etc.
- The weights π turn out to be explicit for many situations.
- We do not need the π to be explicit. We have identified conditions under which $\left(\pi_{i}\right)_{i \in I} \in[0,1]$ for all i; these conditions are not transparent and (probably) not optimal.
- Whenever our method works, our constants are very good.

To do:

- More examples.
- What happens in other distances (e.g. Kolmogorov)?
- When $Z \sim \mathcal{N}(0,1)$ there seems to be a relation with ultra-log concavity of p and the behavior of π.

Some references:

- Braverman, Dai, and Feng. Stein's method for steady-state diffusion approximations: an introduction through the erlang-a and erlang-c models. Stochastic Systems, 6, 2017.
- Chatterjee, Fulman, and Röllin. Exponential approximation by Stein's method and spectral graph theory. ALEA 8, 2011.
- Döbler. Stein's method of exchangeable pairs for the beta distribution and generalizations. Electronic Journal of Probability 20, 2015.
- Goldstein. L ${ }^{1}$ bounds in normal approximation. Annals of Probability 35, 2007.
- Goldstein and Reinert. Stein's method for the beta distribution and the Polya-Eggenberger urn. Journal of Applied Probability, 50, 2013.

