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The Wasserstein distance between the laws of two rrvs X and Z is

Wa(X,2) = sup EIACX)] ~ EIN(2)]

where Lip(1) is the set of all Lipschitz functions on R (a.k.a. Kantorovitch or L*
distance).
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Wa(X,2) = sup EIACX)] ~ EIN(2)]

where Lip(1) is the set of all Lipschitz functions on R (a.k.a. Kantorovitch or L*
distance).

We are interested in the case where

e X is discrete:

PYIAl= > pi

X;€EA
with I = {0,...,£} or I =N, and x;_1 < x; for all i € I\ {0} ;

@ Z is continuous:

PZ[A] = / q(x)dx
A
with g : R — R™ continuously differentiable with support (a, b) C R.

We assume (i) E|Z| = fab |x|g(x)dx < oo and (ii) x; € (a, b) for all i € I.
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Example (Goldstein 2007)

Let Y, ~ Bin(n, t). Then with
X = _Yo—nt and Z ~ N(0,1)
\/nt(1—t)
it holds that ) )
Wi(X,Z) < LM
n /t(1—t)
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Example (Goldstein 2007)

Let Y, ~ Bin(n, t). Then with
e . Z ~ N(0,1)
\/nt(1—t)
it holds that ) )
Wi(X,Z) < 1e+0-9
n /t(l—t)

N,

Example (Goldstein and Reinert 2013)

Let Y, be distributed according to the Pélya-Eggenberger distribution with parameters
a>0,8>0, and m > 1. Then with

X = % and Z ~ Beta(a/m, 3/m)

it holds that

Wl(Xy Z) S C(aanﬁ7 m)

with C(a, 8, m) an explicit function of the parameters.

N
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Theorem (GS, to appear)

Let w : R — R be differentiable over (a, b), and define s(x) = (q(x)w(x))"/q(x) for all
x € (a, b).
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Theorem (GS, to appear)

Let w : R — R be differentiable over (a, b), and define s(x) = (q(x)w(x))"/q(x) for all
x € (a, b). Suppose furthermore that

E[s(X)] =0 and E[Xs(X)+w(X)]=0. )
Then
WA(X, Z) < Co(w) E [|m(X)]67(X) + |1 = m(X)|6 (X)] (2)
where
() 5,+ = 5+(X,') = Xj+1 — Xi and (57 = 6_(Xi) =x; —xj_1 foralli €1 ;

o Cy(w) is an absolute constant depending only on q and w;

o (mi)ier := (7w(xi))ies is a sequence of weights given by
1 i
= () ,Z:;‘ (5 = xi)s(x;) + w(x))) pj- ®3)

If xi —xi—1 =86 >0 foralli >1¢& [ then

Wi(X, Z) < Co(w) SE[|(X)] + [1 — m(X)]].
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Figure: The coefficients 7; when Z ~ N(0,1) (n = 15).
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Several questions:
@ Where does the bound (2) come from?
@ How to choose the function w?
o What do we know about the constants C4(w) ?
@ What does condition (1) mean?

What can we say about the weights 7 from (3)?
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Question 1: Where does the bound
Wa(X, Z) < Co(w)E [[n(X)1%(X) + 1 = n(X)]0™(X)] (2)

come from?
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Question 1: Where does the bound
Wi (X, 2) < Co(w) E [[r(X)18* (X) + 1 — ()|~ (X)] )
come from?

Answer: A new version of Stein's method.
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Definition

Stein operator for Z: Fix w some function. Define

TowF(x) = W) (x) + %‘X’gx”'m) = w()F(x) + s(F(x).

9/20



Stein operator for Z: Fix w some function. Define

TowF(x) = W) (x) + %‘X’gx”'m) = w()F(x) + s(F(x).

| A

Definition
Stein operator for X: Fix m = ()ic/ a sequence of weights. Define

T pw,f(xi) = w(xi)A"f(x;) — W}%f(xﬂ, iel

where . . . .
A™F(xi) = m i) = PO (g PO = Flaa) g
S = 5% Xj — Xi—1

Inspired by [Yang et al. 2018].

.
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Stein operator for Z: Fix w some function. Define

TeeF(x) = WOF () + %‘X’gx”'ﬂx) — W(F(x) + S ().

Definition

| A

Stein operator for X: Fix m = ()ic/ a sequence of weights. Define

T o F (1) = W) A™F () — LB (wP))(xi) (,:i”p))(x") Fx), i€l

where
A" f(xj) = W;M +(1- m)M7

Xi+1 — Xi Xi — Xi—-1

Inspired by [Yang et al. 2018].

i€l

.

We suggest to use Stein's method to evaluate Wi (X, Z) through comparison of T,

with 7w, -
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Stein’s method of comparison of operators in a nutshell

Let h € Lip(1) and f be solution to

h(x) — E[h(Z)] = Tg.wf(x).
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Stein’s method of comparison of operators in a nutshell

Let h € Lip(1) and f be solution to
h(x) = E[A(Z)] = Ta,wfn(x)-
Then E[7 p,w,~fn(X)] = 0 for all h and

Wi(X,Z) = o [E[A(X)] — E[h(2)]]
ip
= sup |E[h(X)—Eh(Z)]|
heLip(1)
= sup [E[Tgufs(X)]
heLip(1)
= sup [E[Toufn(X)] = E[T o, fa(X)]|
heLip(1)
= sup [E[(Tow = Tpw,x) fa(X)]|
heLip(1)

Hence comparing 7q,» with 7~ directly translates into Wasserstein bounds.
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This brings

Wi(X,Z)= sup
heLip(1)

e [w00 (700 - 870 + (st + ELLD)
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This brings

Wi(X,Z)= sup
heLip(1)

e [w00 (700 - 870 + (st + ELLD)

0000 |
From here:

@ choose ™ = m(p, g, w) to cancel out the second summand so that

Wl(X»Z) = sup

heLip(1)

E|w(X) (fh(X) — A"F4(X))
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This brings

WA(X,Z) = sup
heLip(1)

e [w00 (700 - 870 + (st + ELLD)

From here:

@ choose ™ = m(p, g, w) to cancel out the second summand so that

Wi(X,Z)= sup |E

heLip(1)

w(X) (Fi(X) — ATF4(X))

o Wiggling out the functions f;, from the expression leads to (2) with

heLip(1) heLip(

1
Co(w) = 3 < sup  |(Faw) |oo + supl)ff,|oow/oo) .

() 7] |

11/20



Question 2: How to choose the function w and what do we know about the constants
Co(w) ?
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Question 2: How to choose the function w and what do we know about the constants
Co(w) 7
Partial answer: The Stein kernel is a good choice of w for “simple” Z ~ q.
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Definition
The Stein kernel for q is

1 b
) = o / (u — E[Z])q(u)du

a.k.a. the solution to (ra(x)q(x))’
Te\X)a\x))  _ — X
a) ol

for all x € (a, b).
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Definition
The Stein kernel for q is

1 b
) = o / (u — E[Z])q(u)du

a.k.a. the solution to (ra(x)q(x))’
Te\X)a\x))  _ — X
a) ol

for all x € (a, b).

The constants Cy4(74) can (often) be computed explicitly.

o If Z ~ N(0,1) then 74(x) =1 and C¢(q) = 1.
o If Z ~ Exp(A) then 74(x) = x/A and Cy(7q) = 3/2.

o If Z ~ Beta(a, B8) then 74(x) = x(1 — x)/(a+ B) and an explicit bound on Cq(74) is
known.
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Question 3: What can we say about the weights (3) and what does condition (1) mean?
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Question 3: What can we say about the weights (3) and what does condition (1) mean?

Partial answer: Condition (1) is “just” a standardisation; the weights (3) are more
mysterious.
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Let w be given and s = (wq)’/q. We want 7 to satisfy

Theorem (GS, to appear)

Recall
T = p,W(X,) Z( XJ + W(XJ))pjv iel (3)
and
E[s(X)]=0 and E[Xs(X)+ w(X)]=0. (1)
Then
o If | is finite the weights (3) satisfy (4) if and only if (1) holds.
o If I = N the weights (3) satisfy (4), and mw € L*(p) only if (1) holds.

Condition (1) further simplifies if g is integrated pearson, i.e. if its Stein kernel is a 2d
degree polynomial (normal, beta, gamma, student, ...), and if w = 74 to read:

E[X] = E[Z] and Var[X] = Var[Z].
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Let Y ~ Bin(n,t) and X = (Y — nt)/+/nt(1 — t). Let Z ~ N(0,1) and w(x) = 1.
Then

7l’,‘=1—i/l1

for i =0,...,n. Note how 7; € [0,1] for all i =0,...,n.
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Example
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Example

Let Y ~ Bin(n,t) and X = (Y — nt)//nt(1 —t). Let Z ~ N(0,1) and w(x) = 1.
Then

mi=1—1i/n
for i =0,...,n. Note how 7; € [0,1] for all i =0,...,n.

| A\

Example

Let Y ~ NBin(n,t) and X = (Y — n(1 — t)/t)//n(1 — t)/t2. Let Z ~ N(0,1) and
w(x) = 1. Then

= 1—|—i/n
for all i > 0. Note how 7; > 1 for all / > 0.

| \

Example

In the Polya vs beta case, we have
(i + A)(—i + n) (B(B+n— n(A+B+n)+AB—n+ n(A+B+n)))
- (A(=i+n)+B(=i+\/nA+ B+n)) (Bi+ Al —n+\/n(A+B+n)

fori=0,...,n, where A= «a/m and B = 3/m. We can show that 7; € [0, 1].

i
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Example

Consider the uniform measure on the set of the (n’/’z) eigenvalues of the Bernoulli-Laplace
Markov chain appearing in proportion to their multiplicities. Let Y be a random variable
chosen from this distribution. Set

— gy +1and Z ~ Exp(1).

Fix w(x) = x. Then Co(w) = 3, m; = (22",1({# € [0, 1] so that

5
WI(X7Z) < %

See also [Chatterjee and Shao 2011] for a constant equal to 12.

17 /20



Example

Consider the uniform measure on the set of the (n'/’z) eigenvalues of the Bernoulli-Laplace
Markov chain appearing in proportion to their multiplicities. Let Y be a random variable
chosen from this distribution. Set

X = gY+1 and Z ~ Exp(1).
g _ 3 (@n—i)it1)
Fix w(x) = x. Then Co(w) = 5, mi = 55455~ € [0,1] so that

5
Wl(X7Z) < %

See also [Chatterjee and Shao 2011] for a constant equal to 12.

| \

Example

Let X have the stationary distribution of an M/M/n queuing system with rates A, u > 0
with A < un. Let Z be a continuous variable having the stationary distribution of a
suitable piecewise Ornstein-Uhlenbeck process. Then [a slightly more complicated version

of our theorem] gives
% A 7
W, —(X==),Z) <31,/~.
(5o 2) <ok

See also [Braverman et al. 2017] for constant equal to 205.

V.
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Example (Hypergeometric vs normal)

Let Y be the number of marked balls in a sample of r balls taken from an urn with N
balls, n of which are marked; Y is a hypergeometric random variable with mean
p = rn/N and variance o® = nr(N — r)(N — n)/((N — 1)N?). Set

X =(Y —u)/o and Z ~ N(0,1).
Fix w = 1. Then
0=1/0, GCy(w)=1

and
o (n—=10)(r = )(Ni 4+ (N = n)(N —r))

' nr(N — n)(N —r) €[0.1]

so that
NvN -1

nr(N — r)(N — n)

Wi(X,2) < = =
g

An example that doesn’t work (for the moment): Normal approximation of intrinsic
volumes.

18 /20



Some facts:

@ The weights can be negative, larger than 1, monotone or not, etc.
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Some facts:

@ The weights can be negative, larger than 1, monotone or not, etc.

@ The weights 7 turn out to be explicit for many situations.

o We do not need the 7 to be explicit. We have identified conditions under which
(mi)ier € [0,1] for all i; these conditions are not transparent and (probably) not
optimal.

@ Whenever our method works, our constants are very good.

To do:
@ More examples.
@ What happens in other distances (e.g. Kolmogorov)?

o When Z ~ N(0,1) there seems to be a relation with ultra-log concavity of p and
the behavior of 7.

19 /20
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