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The Wasserstein distance between the laws of two rrvs X and Z is

W1(X ,Z) = sup
h∈Lip(1)

|E[h(X )]− E[h(Z)]|

where Lip(1) is the set of all Lipschitz functions on R (a.k.a. Kantorovitch or L1

distance).

We are interested in the case where

X is discrete:
PX [A] =

∑
x i∈A

pi

with I = {0, . . . , `} or I = N, and x i−1 < x i for all i ∈ I \ {0} ;
Z is continuous:

PZ [A] =

∫
A

q(x)dx

with q : R→ R+ continuously differentiable with support (a, b) ⊆ R.

We assume (i) E|Z | =
∫ b

a
|x |q(x)dx <∞ and (ii) x i ∈ (a, b) for all i ∈ I .
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Example (Goldstein 2007)

Let Yn ∼ Bin(n, t). Then with

X =
Yn − nt√
nt(1− t)

and Z ∼ N (0, 1)

it holds that

W1(X ,Z) ≤ 1√
n

t2 + (1− t)2√
t(1− t)

.

Example (Goldstein and Reinert 2013)

Let Yn be distributed according to the Pólya-Eggenberger distribution with parameters
α > 0, β > 0, and m ≥ 1. Then with

X =
Yn

n
and Z ∼ Beta(α/m, β/m)

it holds that
W1(X ,Z) ≤ C(α, β,m)

n

with C(α, β,m) an explicit function of the parameters.
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Theorem (GS, to appear)

Let w : R→ R be differentiable over (a, b), and define s(x) = (q(x)w(x))′/q(x) for all
x ∈ (a, b).

Suppose furthermore that

E[s(X )] = 0 and E [Xs(X ) + w(X )] = 0. (1)

Then
W1(X ,Z) ≤ Cq(w) E

[
|π(X )|δ+(X ) + |1− π(X )|δ−(X )

]
(2)

where

δ+
i = δ+(x i ) = x i+1 − x i and δ−i = δ−(x i ) = x i − x i−1 for all i ∈ I ;

Cq(w) is an absolute constant depending only on q and w ;

(πi )i∈I := (π(x i ))i∈I is a sequence of weights given by

πi =
1

piw(x i )

i∑
j=0

((x j − x i )s(x j) + w(x j)) pj . (3)

Corollary

If x i − x i−1 = δ > 0 for all i ≥ 1 ∈ I then

W1(X ,Z) ≤ Cq(w) δ E[|π(X )|+ |1− π(X )|].
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πi =
1

piw(x i )

i∑
j=0

((x j − x i )s(x j) + w(x j)) pj .

Figure: The coefficients πi when Z ∼ N(0, 1) (n = 15).
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Several questions:

Where does the bound (2) come from?

How to choose the function w?

What do we know about the constants Cq(w) ?

What does condition (1) mean?

What can we say about the weights π from (3)?
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Question 1: Where does the bound

W1(X ,Z) ≤ Cq(w) E
[
|π(X )|δ+(X ) + |1− π(X )|δ−(X )

]
(2)

come from?

Answer: A new version of Stein’s method.
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Definition
Stein operator for Z : Fix w some function. Define

Tq,w f (x) = w(x)f ′(x) +
(w(x)q(x))′

q(x)
f (x) = w(x)f ′(x) + s(x)f (x).

Definition
Stein operator for X : Fix π = (πi )i∈I a sequence of weights. Define

T p,w,πf (x i ) = w(x i )∆πf (x i )−
((∆π)t(wp))(x i )

pi
f (x i ), i ∈ I

where
∆πf (x i ) = πi

f (x i+1)− f (x i )

x i+1 − x i
+ (1− πi )

f (x i )− f (x i−1)

x i − x i−1
, i ∈ I ,

Inspired by [Yang et al. 2018].

We suggest to use Stein’s method to evaluate W1(X ,Z) through comparison of Tq,w
with T p,w,π.
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Stein’s method of comparison of operators in a nutshell

Let h ∈ Lip(1) and f h be solution to

h(x)− E[h(Z)] = Tq,w f h(x).

Then E[T p,w,πf h(X )] = 0 for all h and

W1(X ,Z) = sup
h∈Lip(1)

|E[h(X )]− E[h(Z)]|

= sup
h∈Lip(1)

∣∣E[h(X )− Eh(Z)
]∣∣

= sup
h∈Lip(1)

|E[Tq,w f h(X )]|

= sup
h∈Lip(1)

|E[Tq,w f h(X )]− E [T p,w,πf h(X )]|

= sup
h∈Lip(1)

|E[(Tq,w − T p,w,π) f h(X )]|

Hence comparing Tq,w with T p,w,π directly translates into Wasserstein bounds.
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This brings

W1(X ,Z) = sup
h∈Lip(1)

∣∣∣∣E[w(X )

(
f ′h(X ) − ∆πf h(X )

)
+

(
s(X ) +

(∆π)t(wp)

p
(X )

)
f h(X )

]∣∣∣∣.

From here:

choose π = π(p, q,w) to cancel out the second summand so that

W1(X ,Z) = sup
h∈Lip(1)

∣∣∣∣∣E
[
w(X )

(
f ′h(X )−∆πf h(X )

) ]∣∣∣∣∣
Wiggling out the functions f h from the expression leads to (2) with

Cq(w) =
1
2

(
sup

h∈Lip(1)

|(f ′hw)′|∞ + sup
h∈Lip(1)

|f ′h|∞|w ′|∞

)
.
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) ]∣∣∣∣∣

Wiggling out the functions f h from the expression leads to (2) with

Cq(w) =
1
2

(
sup

h∈Lip(1)

|(f ′hw)′|∞ + sup
h∈Lip(1)

|f ′h|∞|w ′|∞

)
.
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Question 2: How to choose the function w and what do we know about the constants
Cq(w) ?

Partial answer: The Stein kernel is a good choice of w for “simple” Z ∼ q.
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Definition
The Stein kernel for q is

τq(x) =
1

q(x)

∫ b

x

(u − E[Z ])q(u)du

a.k.a. the solution to
(τq(x)q(x))′

q(x)
= E[Z ]− x

for all x ∈ (a, b).

The constants Cq(τq) can (often) be computed explicitly.

Example
If Z ∼ N (0, 1) then τq(x) = 1 and Cq(τq) = 1.

If Z ∼ Exp(λ) then τq(x) = x/λ and Cq(τq) = 3/2.

If Z ∼ Beta(α, β) then τq(x) = x(1− x)/(α+ β) and an explicit bound on Cq(τq) is
known.
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Question 3: What can we say about the weights (3) and what does condition (1) mean?

Partial answer: Condition (1) is “just” a standardisation; the weights (3) are more
mysterious.
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Let w be given and s = (wq)′/q. We want π to satisfy

((∆π)t(wp))(x i )

pi
= −s(xi ), for all i ∈ I (4)

Theorem (GS, to appear)

Recall

πi =
1

piw(xi )

i∑
j=0

((x j − x i )s(xj) + w(xj)) pj , i ∈ I (3)

and
E[s(X )] = 0 and E [Xs(X ) + w(X )] = 0. (1)

Then

If I is finite the weights (3) satisfy (4) if and only if (1) holds.

If I = N the weights (3) satisfy (4), and πw ∈ L1(p) only if (1) holds.

Condition (1) further simplifies if q is integrated pearson, i.e. if its Stein kernel is a 2d
degree polynomial (normal, beta, gamma, student, ...), and if w = τq to read:

E[X ] = E[Z ] and Var[X ] = Var[Z ].
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Example

Let Y ∼ Bin(n, t) and X = (Y − nt)/
√

nt(1− t). Let Z ∼ N (0, 1) and w(x) = 1.
Then

πi = 1− i/n

for i = 0, . . . , n. Note how πi ∈ [0, 1] for all i = 0, . . . , n.

Example

Let Y ∼ NBin(n, t) and X = (Y − n(1− t)/t)/
√

n(1− t)/t2. Let Z ∼ N (0, 1) and
w(x) = 1. Then

πi = 1 + i/n

for all i ≥ 0. Note how πi ≥ 1 for all i ≥ 0.

Example
In the Polya vs beta case, we have

πi =
(i + A)(−i + n)

(
B(B + n −

√
n(A + B + n)) + A(B − n +

√
n(A + B + n))

)
(
A(−i + n) + B(−i +

√
n(A + B + n))

)(
Bi + A(i − n +

√
n(A + B + n))

) .

for i = 0, . . . , n, where A = α/m and B = β/m. We can show that πi ∈ [0, 1].
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Example

Consider the uniform measure on the set of the
(

n
n/2

)
eigenvalues of the Bernoulli-Laplace

Markov chain appearing in proportion to their multiplicities. Let Y be a random variable
chosen from this distribution. Set

X =
n

2
Y + 1 and Z ∼ Exp(1).

Fix w(x) = x . Then Cq(w) = 3
2 , πi = (2n−i)(i+1)

2n(1+2i) ∈ [0, 1] so that

W1(X ,Z) ≤ 5√
n
.

See also [Chatterjee and Shao 2011] for a constant equal to 12.

Example
Let X have the stationary distribution of an M/M/n queuing system with rates λ, µ > 0
with λ < µn. Let Z be a continuous variable having the stationary distribution of a
suitable piecewise Ornstein-Uhlenbeck process. Then [a slightly more complicated version
of our theorem] gives

W1

(√
µ

λ
(X − λ

µ
),Z

)
≤ 31

√
µ

λ
.

See also [Braverman et al. 2017] for constant equal to 205.
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Example (Hypergeometric vs normal)

Let Y be the number of marked balls in a sample of r balls taken from an urn with N
balls, n of which are marked; Y is a hypergeometric random variable with mean
µ = rn/N and variance σ2 = nr(N − r)(N − n)/((N − 1)N2). Set

X = (Y − µ)/σ and Z ∼ N (0, 1).

Fix w = 1. Then
δ = 1/σ, Cq(w) = 1

and
πi =

(n − i)(r − i)(Ni + (N − n)(N − r))

nr(N − n)(N − r)
∈ [0, 1]

so that

W1(X ,Z) ≤ 1
σ

=
N
√
N − 1√

nr(N − r)(N − n)

An example that doesn’t work (for the moment): Normal approximation of intrinsic
volumes.
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Some facts:
The weights can be negative, larger than 1, monotone or not, etc.

The weights π turn out to be explicit for many situations.

We do not need the π to be explicit. We have identified conditions under which
(πi )i∈I ∈ [0, 1] for all i ; these conditions are not transparent and (probably) not
optimal.

Whenever our method works, our constants are very good.

To do:
More examples.

What happens in other distances (e.g. Kolmogorov)?

When Z ∼ N (0, 1) there seems to be a relation with ultra-log concavity of p and
the behavior of π.
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