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Pricing in Insurance
Why Classifying Risks ?
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SEGMENTATION MUTUALISATION

WHICH ONE IS THE BEST MODEL ?




Pricing in Insurance
Why Classifying Risks ?

Philosophical point of view
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EGALITY VS EQUITY/FAIRNESS




Pricing in Insurance
Why Classifying Risks ?

Insurer’s point of view

E |cost|Female]

E |cost|Male]

E |cost]

50 50 §¢ 100 150 &.100
150
100

A/ \u

Insurer nsurer B
PU; = E[Cost| Sex] PU; = E[Cost]

ARAA e

ADVERSE SELECTION PHENOMENON




Pricing In Insurance

Let Y € R™ be a response vector and X € R™ a vector of features

The aim of actuarial ratemaking is to evaluate the pure premium as accurately as possible.
The target is thus the conditional expectation :

u(X) = E[Y|X]

Generally unknown

f(X)

Lot of data
Lot of features

=P Supervised Learning




Pricing in Insurance
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Pricing In Insurance

Goal

7 : X = Y that minimizes the expectation of some loss function L(Y, 7)

over the joint distribution of all (¥, X) — values, I.e ;

#(X) = E[Y|X] = arg min BIL(Y, (X))

X arg min — 2 L(y,, n(X;)) = arg min 2 L(y,, (X))

n(x) N 7(X)



Regression trees




Regression trees

ldea

To begin, the idea is to partition the predictor space into two regions : R!" and R}"

How to choose Rl(l) and Rz(l)?

Wich prediction in each of R'" and R}"?




Regression trees

ldea

Training set = {(y;,x,);i = 1,---,n} denoted D.

Search every distinct value of every predictor to find the predictor and split value that partitions
the predictor space into two regions :

R and RY such that
1 2 (1) (1)
c,’ =ave|yl|x; eR,

ZL(ypﬂ(X))— D Lone)+ ) L.l

(1) _ (1)
lXER(l) ZXER(D 6‘2 = ave <yl ‘ Xi < R2 >

_ = (1
n(X;) = C(l )I{XiERl(l)} T c(2 )I{xieRé”}

» The training set D is then partitioned into two groups D'V and D®, where

D) = {(yi, X)) X; € Rl(l)} D®) = {(yl., X)) ! X; € Rz(l)}




Regression trees

Algorithm

D

{(pxp)si=1,--,n}

¢ = ave{y| (y.x;) € D} pW
2

. (D)
{(yl-, X) : X; € R }

—(1 1
c;)zave{yi|xieR2( )}

D<15
{(yi’ X;) ! X; € Rl(l)}

—(1 1
¢l = ave {yi|Xi€R1( )}

{(y,-, X)) :X; € RS)} {(y o Xi) 1 X; € Rg)} {(yl-, X)) X; € Ré?}

=(2) _ 2)
c; =ave {yi|XiER3 égz)zave{yilxieRf)

(3)
D7

: 3
{(yl-,xi) %, € R} >}
c¥ = ave {yl»lxl- € R7(3)}

(3)
Dy
(03 )
¢V =ave {yilxi € RS)}

(3)
D3
{(yl-, X;) ! X; € R3(3)}

=3 3
cg)=ave{yi|xieR3()

{(yi, X) 1 X; € Rf>}

¢V = ave {yl- |x; € R

¢ = ave {yi|xl- € R5(3)}

m(X) = 2 Col (xer, ) Here M =2° =8




Regression trees

Algorithm

» Repeat the previous step within each of groups D and D® and so on

Stop
- When the number of samples in the split falls below some threshold
- When the depth of the tree reached a certain limit
- When the improvement in the loss function becomes too small
- Pruning (with complexity parameter)

-)




Regression trees

Advantages & Disadvantages

Advantages
» Easy to interpret

» Intuitively, the most important predictors are those
that appear

— Higher in the tree ;
— Several times in the tree.

» Do not require to specify the form of the
regression function
(Non-parametric regression)

-
-

-)

Disadvantages

The final tree can be very large and
overfit the training set

Instability of the Model (slight changes in
the data can drastically change the
structure of the tree).

Finite number of possible predicted
outcomes (determined by number of
terminal nodes).

Partition the data in rectangular regions
of the predictor space (not optimal
predictive performance)



Regression trees

Advantages & Disadvantages

datal = data[1:100000,]

data2 = data[10000:110000,]

90% of the observations are the same, but structure of de tree is completely different !




Bagging & Random
Forest




Bagging & Random Forest

Bagging Random Forest

Fort=1toT: Fort=1toT:
1) Generate a Bootstrap D_t sample of the original data 1) Generate a Bootstrap D_t sample of the original data
2) Fit a tree on this Sample D_t 2) Fit a tree such that :
3) Give a prediction : 7(x) For each node :

| - Select randomly m predictors

Rpag(X) = — Z 7,(X) - Chqose de begt predict amoung theses m predictors
I3 - Split the node into two daughters node

3) Give a prediction :

1 T
1y (%) = — ) #(X)
i=1

» Aggregating bootstrap trees reduces the variance Iin

the prediction and hence makes the prediction more Reducing m reduce the correlation between any pair of trees
stable. Reduce the variance of 7,.(x)

A bagged model is less interpretable than a model
that is not bagged.
A bagged tree is no longer a tree.




Boosting & Gradient
Boosting




Boosting & Gradient Boosting
Boosting Methods

Several trees are also used. But this is not the same philosophy as bagging or RF.

Each tree will explain what is not yet explained.

Boosting Methods combining many weak rules to approximate

A weak learner is a learning algorithm which is slightly better than random
guessing.

A weak learner can be constructed by a small regression tree !




Boosting & Gradient Boosting
Additive models & Boosting

The standard linear regression model assumes a linear form for the conditional expectation E[y|x]

P
Ely|x] % (%) = fy+ ¥ fix;
j=1
An additive model extends the linear model, by assuming an additive predictor of the form :

P
Ely|x] ~ #(x) = ) f(x)

j=1

The additive model can be generalized by considering functions of potentially all the inputs variables

T T
Ely|x] ~ #x) = ) fix) = ) B,h(a,x)
=1 =1

Estimation of the parameters amounts to solve

n

T
min L (yi725t,ath(wi;at)) -
t=1

{5t,at 7at}:,iz_—’ 'L:].




Boosting & Gradient Boosting

Boosting
Boosting
Initialize z,(x) = 0 (for example)
Fort=1to T, do Remark
1) Estimate f,, and a, by minimizing : If loss function = squared error
2
D L0 7 (X)) + B u h(x;, a) D LG 71 (%) + Ba h(xi,a)) = |y, — 7,1 (x) — B, hi(x;, @)
i=1 - S
2) Update z(x) = z,_, + f,, h(x;, a,) r;,_, equals the residuals for observation i at the iteration ¢ — 1

Output : #(x) = 7A(x)



Boosting & Gradient Boosting

Boosting
Boosting
Initialize z,(x) = 0 (for example)
Fortr=11to 7T, do
1) Estimate :Bt,at and a, by minimizing : Solution to step (2.1) in Algorithm 1 can be difficult to obtain

IN Ssome cases.

D LG 7 (%) + Bah(x;, )
=1

2) Update z(x) = z,_, + f,, h(x;, a,)

The gradient boosting algorithm aims to solve this issue by
using a two-step procedure for step (2.1).

Output : #(x) = 7A(x)



Boosting & Gradient Boosting
Gradient Boosting Method

Boosting Gradient Boosting Method
Initialize z,(x) = 0 (for example) Initialize zy(x) = arg mﬁin i L(y, p)
Fort=11to T, do Fort=1to T, do =l
1) Estimate f,, and a, by minimizing : 1) Estimate the negative gradients

l.e the pseudo-residuals

_ OL(y;, n(x))

Z L(yia ﬂt—l(Xi) + ﬂt,ath(xia al‘)) ri — a ( ) l — 19“'9 n
i=1 n(X;

n(x;))=m,_(X;)

Fit h(x;,a,) to r, to get a,

Estimate f,, and a, by minimizing :

D LGy (X)) + B, h(x,.2)
i=1
2) Update z(x) = 7,_; + f,, h(x;, a,) 2) Update z(x) = 7,_y + f,, h(x;, a,)

Output : 72(x) = 7x(x) Output : 72(x) = 7(x)



Boosting & Gradient Boosting

negative
gradient

Gradient Boosting Method

(finding this point x is the
goal of gradient descent)

(increasing
(decreasing values)

values) o
positive

gradient

(stationary)
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Adaptive Boosting
Trees (ABT)
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Adaptive Boosting Trees

Tweedie family

Type Name
£E<0 Continuous -
£ = Continuous Normal
0 <& <1 Non existing -
£ = Discrete Poisson

1 <& <2 Mixed, non-negative Compound Poisson sums
with Gamma-distributed severities

£ = Continuous, positive (Gamma

2 < £ <3 Continuous, positive -

£ = Continuous, positive Inverse Gaussian
>3 Continuous, positive -

Tweedie deviance loss function is given by

(y — 1i(z))* for £ =0
X 2 (yIn 55 — (y — @) ) for £ =1
L(y7 /'l’(m)) — 2(—1n % 4+ Y ]_) forf: 2
u(z)

()

max{y,0}2~¢ ()¢ - p(x 2—¢
2 (1—3(2}—5) y”(l_)£ | N(2Z€ ) for € > 1 and € # 2.




Adaptive Boosting Trees
Idea

Instead of allowing for trees with constant interaction depth at each iteration

Let the complexity of the newly added tree adapt to the structure remaining to be
learned from the data .

- Larger trees are fitted at earlier stages and they progressively simplify until reducing to the single-node tree
where the ABT machine stops.

- The stopping criterion is thus built within the ABT algorithm and no computationally- intensive cross
validation step Is nheeded.

- This adaptive boosting algorithm enables to reduce overfitting




Adaptive Boosting Trees

ldea

Generalization error

Generalization error
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Fairness in Machine
Learning




The Fairness of Machine Learning in Insurance:
New Rags for an Old Man?
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Abstract

Since the beginning of their history, insurers have been known to use data to classify and price
risks. As such, they were confronted early on with the problem of fairness and discrimination
associated with data. This issue is becoming increasingly important with access to more granular
and behavioural data, and is evolving to reflect current technologies and societal concerns. By
looking into earlier debates on discrimination, we show that some algorithmic biases are a
renewed version of older ones, while others show a reversal of the previous order. Paradoxically,
while the insurance practice has not deeply changed nor are most of these biases new, the
machine learning era still deeply shakes the conception of insurance fairness.

“Technology is neither good nor bad; nor is it neutral’ [Kranzberg, 1986|




Thanks a lot for your
attention!
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