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Weak identifiability

Let (Xni )n be a triangular array of idd observations with a joint

probability distribution P
(n)
θθθ,ξξξn

indexed by a sequence of parameters

(θθθ, ξξξn) ∈ΘΘΘ×ΞΞΞ.

Now, assume that

(i) for any n, the parameter θθθ is well identified in the sense that,

for any n, if θθθ1 ̸= θθθ2, then P
(n)
θθθ1,ξξξn

̸= P
(n)
θθθ2,ξξξn

while

(ii) the parameter θθθ is not properly identified in P
(n)
θθθ,ξξξ0

where

ξξξ0 := limn→∞ ξξξn.

The parameter θθθ will then be said to be weakly identified.
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WI : Example

Consider random directions sharing a common rotationally
symmetric distribution over Sp−1, i.e. having a density of the form

x 7→ cp,κ,f f (κx
′θθθ), (1)

where θθθ ∈ Sp−1 is a location parameter, κ > 0 is a concentration
parameter, and the angular function f belongs to the collection F
of monotone increasing functions from R to R+.



WI : Example

κ = 10



WI : Example

κ = 3



WI : Example

κ → 0



Section 1

Testing for principal component directions under
weak identifiability



Motivation example

Flury (1988) conducted a Principal Component Analysis (PCA) of
the (celebrated) Swiss banknotes data. Flury (1988) focused on four
measurements, namely the width L of the left side of the banknote,
the width R on its right side, the width B of the bottom margin
and the width T of the top margin, all measured in mm×10−1 on
n = 85 counterfeit bills made by the same forger.



The resulting sample covariance matrix is

S =


6.41 4.89 2.89 −1.30
4.89 9.40 −1.09 0.71
2.89 −1.09 72.42 −43.30
−1.30 0.71 −43.30 40.39

 ,

with eigenvalues of λ̂1 = 102.69, λ̂2 = 13.05, λ̂3 = 10.23 and
λ̂4 = 2.66, and corresponding eigenvectors :

θ̂θθ1 =


.032
−.012
.820
−.571

 θ̂θθ2 =


.593
.797
.057
.097



θ̂θθ3 =


−.015
−.129
.566
.814

 θ̂θθ4 =


.804
−.590
−.064
−.035





Flury concludes that the first principal component is a contrast
between B and T . It is tempting to interpret the second principal
component as an aggregate of L and R. Flury, however, explicitly
writes “beware : the second and third roots are quite close and so
the computation of standard errors for the coefficients of θ̂θθ2 and θ̂θθ3
may be hazardous”. In other words, Flury, due to the structure of
the spectrum, refrains from drawing any conclusion about the
second principal component.



Question : can we say something about the true underlying
eigenvector θθθ2 when the true underlying eigenvalues λ2 and λ3 are
“very close to each other” ? That is under a situation of weak
identifiability of θθθ2 ?

Testing problem : we consider the problem of testing the null
hypothesis H0 : θθθ1 = θθθ01 against the alternative H1 : θθθ1 ̸= θθθ01, where
θθθ01 is a given unit vector of Rp. We will consider situations where
λ1 − λ2 is small.
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Working context

▶ Triangular array of Gaussian vectors.

▶ Single spiked spectra :

ΣΣΣn : = σ2
n

(
Ip + rnvθθθ1θθθ

′
1

)
= σ2

n(1 + rnv)θθθ1θθθ
′
1 + σ2

n

(
Ip − θθθ1θθθ

′
1

)
▶ Weak identifiability occurs when rn → 0, since this implies

λ1/λ2 → 1.



A torough asymptotic investigation of this problem requires to
discuss four different regimes :

(i) rn ≡ 1 ;

(ii) rn = o(1) with
√
nrn → ∞ ;

(iii) rn = 1/
√
n ;

(iv) rn = o(1/
√
n).



Under the null : Anderson’s test

The likelihood ratio test rejects the null at asymptotic level α when

Q
(n)
A := n

(
λ̂1θθθ

0′
1 S

−1θθθ01 + λ̂−1
1 θθθ0′1 Sθθθ

0
1 − 2

)
> χ2

p−1,1−α.

Theorem
Fix a unit p-vector θθθ01, v > 0 and a nonnegative real sequence (rn)
satisfying (i) rn ≡ 1 or (ii) rn = o(1) with

√
nrn → ∞. Then,

under P
(n)

θθθ01,rn,v
,

Q
(n)
A

D→ χ2
p−1,

so that, in regimes (i)-(ii), the test ϕA has asymptotic size α under
the null.
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Under the null : Le Cam optimal test

This test rejects the null at asymptotic level α when

Q
(n)
HPV :=

n

λ̂1

p∑
j=2

λ̂−1
j

(
θ̃θθ
′
jSθθθ

0
1

)2
> χ2

p−1,1−α.

Theorem
Fix a unit p-vector θθθ01, v > 0 and a bounded nonnegative real

sequence (rn). Then, under P
(n)

θθθ01,rn,v
,

Q
(n)
HPV

D→ χ2
p−1,

so that, in all regimes (i)-(iv) from the previous section, the
test ϕHPV has asymptotic size α under the null.
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Under the null : Simulations
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Figure – Empirical rejection frequencies of the tests ϕ
(n)
HPV and ϕ

(n)
A

performed at nominal level 5%. Results are based on M = 10, 000
independent ten-dimensional Gaussian random samples.



Under the null : Anderson’s test

Theorem
Fix p = 2, a unit p-vector θθθ01, v > 0 and a nonnegative real

sequence (rn) such that
√
nrn → 0. Then, under P

(n)

θθθ01,rn,v
,

Q
(n)
A

D→ 4χ2
p−1,

so that, irrespective of α ∈ (0, 1), the test ϕ
(n)
A has an asymptotic

size under the null that is strictly larger than α.



Summary

▶ Unlike ϕ
(n)
A , the test ϕ

(n)
HPV is validity-robust to weak

identifiability ;

▶ but the trivial level-α test, that randomly rejects the null with
probability α, enjoys the same robustness property ;

⇒ it motivates to investigate whether or not the

validity-robustness of ϕ
(n)
HPV is obtained at the expense of

efficiency.
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Non-null results

Theorem
Fix θθθ01 ∈ Sp−1. Let (τττn)n be a sequence converging to τττ and such

that θθθ0 + νnτττn ∈ Sp−1 for any n. Then, under P
(n)

θθθ01+νnτττn,rn,v
, we

have, as n → ∞, that Q
(n)
HPV is asymptotically non-central

chi-square with p − 1 degrees of freedom and with non-centrality
parameter equal to :
▶ if rn ≡ 1

↫

(v2/(1 + v))∥τττ∥2,
▶ if rn = o(1) with

√
nrn → ∞

↫

v2∥τττ∥2,
▶ if rn = 1√

n

↫v2

16∥τττ∥
2
(
4− ∥τττ∥2

)(
2− ∥τττ∥2

)2
,

▶ if rn
√
n → 0

↫

it has no non-centrality parameter.



What about optimality ?

By studying the present hypothesis testing context through the Le
Cam theory, one can show that the sequence of models is LAN in
regimes (i), (ii) and (iv).

This leads to the conclusion that ϕ
(n)
HPV is optimal (locally and

asymptotically) in these regimes. Note that the optimality in regime
(iv) is trivial, in the sense that no test can detect the most severe
alternatives.

For the regime (iii), unfortunately we don’t have such a LAN

situation. But ϕ
(n)
HPV is rate-consistent .
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Figure – (Left :) Non-centrality parameters, as a function
of ∥τττ∥(∈ [0,

√
2]), in the asymptotic non-central chi-square distributions of

the test statistics of ϕ
(n)
HPV and ϕ

(n)
oracle, respectively, under alternatives of

the form P
(n)

θθθ0
1+τττ,1/

√
n,1

. (Right :) The corresponding asymptotic power

curves in dimensions p = 2 and p = 3.



Conclusion

We saw here that the test ϕ
(n)
HPV is

▶ validity-robust to weak identifiability,

▶ essentially locally and asymptotically optimal.

A possible research perspective is to look at this problem in the
high-dimensional case.



End of the story ?



A new angle

The previous tests are based on the sample covariance matrix
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⇓
Sign tests



Section 2

Sign Tests for Weak Principal Directions



Angular Gaussian Distribution

Let X be a centered elliptical distributed variable with covariance
matrix ΣΣΣn.

Then the projected observation U = X/∥X∥ follows the p-variate
angular Gaussian distribution with shape matrix Vn = pΣΣΣn/ tr(ΣΣΣn).



Working context

▶ Triangular array of Angular Gaussian vectors.

▶ Single spiked spectra :

Vn =

(
1− δnϵ

p

)
Ip + δnϵθθθ1θθθ

′
1

▶ Weak identifiability occurs when δn → 0, since this implies
λ1/λ2 → 1.



We could discern four different regimes :

(i) δn ≡ 1 ;

(ii) δn = o(1) with
√
nδn → ∞ ;

(iii) δn = 1/
√
n ;

(iv) δn = o(1/
√
n).



Our proposed sign test

This test rejects the null hypothesis at constraint level α if

Q
(n)
Sgn(Ṽ0n) = np(p + 2)∥(Ip − θθθ0θθθ

′
0)Sn(Ṽ0n)θθθ0∥2 > χ2

p−1,1−α,

where

Sn(V) =
1

n

n∑
1

V− 1
2UniU

′
niV

− 1
2

∥V− 1
2Uni∥2

,

and Ṽ is the Tyler’s M-estimator of V.

Theorem
Let V0n be any sequence of null shape matrix of the form

λ1θθθ0θθθ
′
0 +

∑j
2 λjθθθjθθθ

′
j . Then under P

(n)
V0n

, Q
(n)
Sgn(Ṽ0n) is asymptotically

chi-square with p − 1 degrees of freedom.

Note that this remains true for multispike setting !
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An alternative test

To test this problem, one can also consider the likelihood ratio test

ϕ
(n)
Tyl, that rejects the nul hypothesis at constraint level α if

Q
(n)
Tyl =

np

p + 2
(λ̂n1θθθ

′
0V̂

−1
n θθθ0 + λ̂−1

n1 θθθ
′
0V̂

−1
n θθθ0 − 2) > χ2

p−1,1−α,

where V̂n still stands for Tyler’s M-estimator.

Theorem
Away from weak identifiability, both test are asymptotically
equivalent.



Simulations
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Asymptotics of the proposed test

Theorem
Fix θθθ0 ∈ Sp−1. Let (τττn)n be a sequence converging to τττ and such
that θθθ0 + νnτττn ∈ Sp−1 for any n ; and take νn = 1/(

√
nγn). Then,

under P
(n)
V1n

, we have, as n → ∞, that Q
(n)
Sgn(Ṽ0n) is asymptotically

chi-square with p − 1 degrees of freedom and non-centrality
parameter equal to :
▶ if δn ≡ 1

↫p(p+(p−1)ξ)
(p+2)(p−ξ) ∥τττ∥

2,

▶ if δn = o(1) with
√
nδn → ∞

↫ p
p+2∥τττ∥

2,

▶ if δn = 1√
n

↫ p
p+2∥τττ∥

2
(
1− 1

2ξ2 ∥τττ∥
2
)2 (

1− 1
4ξ2 ∥τττ∥

2
)
,

▶ if δn
√
n → 0

↫

it has no non-centrality parameter.



Notations

▶ ξ > 0 is a locality parameter,

▶ δn is a bounded sequence,

▶ γn = pδnξ
p+(p−1)δnξ

= O(δn).
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Figure – Rejection
frequencies for the
four tests
considered, in
different heavy
tail/weak
identifiability
settings.
Simulation were
done on 2500
samples of 200
independent
bivariate variables.



What about optimality ?

By studying the present hypothesis testing context through the Le
Cam theory, one can show that the sequence of models is LAN in
regimes (i), (ii) and (iv).

This leads to the conclusion that our sign test is optimal (locally
and asymptotically) in these regimes. Note that the optimality in
regime (iv) is trivial, in the sense that no test can detect the most
severe alternatives.

For the regime (iii), unfortunately we don’t have such a LAN
situation. But our test is rate-consistent (it shows non-trivial
asymptotics power against contiguous alternatives).



Back to the starting example

Flury (1988) conducted a Principal Component Analysis (PCA) of
the (celebrated) Swiss banknotes data. Flury (1988) focused on four
measurements, namely the width L of the left side of the banknote,
the width R on its right side, the width B of the bottom margin
and the width T of the top margin, all measured in mm×10−1 on
n = 85 counterfeit bills made by the same forger.



The resulting sample covariance matrix is

S =
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6.41 4.89 2.89 −1.30
4.89 9.40 −1.09 0.71
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−1.30 0.71 −43.30 40.39
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Flury concludes that the first principal component is a contrast
between B and T . It is tempting to interpret the second principal
component as an aggregate of L and R. Flury, however, explicitly
writes “beware : the second and third roots are quite close and so
the computation of standard errors for the coefficients of θ̂θθ2 and θ̂θθ3
may be hazardous”. In other words, Flury, due to the structure of
the spectrum, refrains from drawing any conclusion about the
second component.



The considerations above make it natural to test that L and R
contribute equally to the second principal component and that they
are the only variables to contribute to it. In other words, it is natural
to test the null hypothesis H0 : θθθ2 = θθθ02, with θθθ02 := (1, 1, 0, 0)′/

√
2.

▶ The Anderson test provides a p-value aqual to .099,

▶ The HPV test provides a p-value equal to .177,

▶ Our Sign test provides a p-value equal to .992,

▶ The Tyler test provides a p-value equal to 0.609.

Both sign tests as well as the HPV test do not reject the null
hypothesis at any usual nominal level. But it not the case of the
Anderson test who rejects the null at the level 10%. But in view of
all our results, we can be confident in taking the good decision by
not rejecting the null here.
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Figure – Boxplots of the 85 “leave-one-out” p-values of the four tests
when testing the null hypothesis H0 : θθθ2 := (1, 1, 0, 0)′/

√
2.



Conclusion

We saw here that our proposed sign test is

▶ validity-robust to heavy tails (as other sign tests),

▶ validity-robust to weak identifiability (as the HPV test),

but unlike the competitors, it achieves both, while being
asymptotically locally optimal (but in the case δn = 1/

√
n, for

which it is still rate-optimal.

Beside that, our test is also robust to some departures from ellipticiy.
Since it only assume that the spatial signs Uni = Xni/∥Xni∥ follows
an Angular Gaussian distribution, they do not need to be
independent of ∥Xni∥, and thus our test can deal with some skewed
distributions.



Section 3

ANOVA on weak directions



κ = 10 κ = 3 κ → 0



Question : can we compare the location parameters θθθ1 and θθθ2 of
two samples when their common true underlying distribution is
“very close” to the uniform one ? That is under a situation of weak
identifiability of θθθ1 and θθθ2 ?

Testing problem : we consider the problem of testing the null
hypothesis H0 : θθθ1 = θθθ2 against the alternative H1 : θθθ1 ̸= θθθ2, where
θθθi is a unit vector of Rp. We will consider situations where κn tends
to 0.
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Working context

▶ Two triangular arrays of rotationally symmetric distributed
vectors.

▶ Both samples have the same angular function f , also the same
concentration parameter κn = ξ

√
pηn + oP(1) but their

location parameter may differ.

▶ Weak identifiability occurs when ηn → 0.



We could once again discern four different regimes :

(i) ηn ≡ 1 ;

(ii) ηn = o(1) with
√
nηn → ∞ ;

(iii) ηn = 1/
√
n ;

(iv) ηn = o(1/
√
n).



The two tests

▶ Q
(n)
LSV := (p−1)n1n2

Ĵpn
(X̄1 − X̄2)

′P⊥
θ̂θθ
(X̄1 − X̄2) > χ2

p−1,1−α

where Ĵp is a natural estimator of

Jp := E[(1− ((X
(j)
ni )

′θθθ)2)].

▶ Q
(n)
H := n1n2

n (X̄1 − X̄2)
′S−1

n (X̄1 − X̄2) > χ2
p,1−α

where Sn is a pooled empirical covariance matrix.



Asymptotics under the null

Theorem
Fix ϑϑϑ = (θθθ′, θθθ′)′ ∈ (Sp−1)2. Then, for any bounded sequence κn and

any angular density f , we have that, under P
(n)
ϑϑϑ,κn,f

,

(i) Q
(n)
LSV converges weakly to a chi-square random variable with

p − 1 degrees of freedom, and

(ii) Q
(n)
H converges weakly to a chi-square random variable with p

degrees of freedom,

as n → ∞.



Asymptotics under the null

Figure – Rejection frequencies of the Hotelling test (orange) and of the
pseudo FvML test (blue). Simulations were made with two 3-dimensional
FvML samples of size 20, 000 with 2, 500 replications. The lighter the color
(the larger w), the faster κn converges to 0.



Asymptotics under the alt

Theorem
Fix ϑϑϑ ∈ H0 and let κn =

√
pηnξ be a bounded (potentially o(1))

sequence. Then, under P
(n)
ϑϑϑ+ℓnνννnτττn,κn,f

, we have the following as
n → ∞ :
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Theorem
Fix ϑϑϑ ∈ H0 and let κn =

√
pηnξ be a bounded (potentially o(1))

sequence. Then, under P
(n)
ϑϑϑ+ℓnνννnτττn,κn,f

, we have the following as
n → ∞ :

(i) if ηn ≡ 1, with ℓn = 1/
√
n,

(a) Q
(n)
LSV converges weakly to a chi-square random variable with

p − 1 degrees of freedom and non-centrality parameter

K2
p,f ξ

2p

Jp(p − 1)
∥
√
r2τττ 1 −

√
r1τττ 2∥2,

with Kp,f := E[φf (κn(X
(j)
ni )

′θθθ)(1− ((X
(j)
ni )

′θθθ)2)] (the

expectation is taken under P
(n)
ϑϑϑ,κn,f

) ;

(b) Q
(n)
H converges weakly to a chi-square random variable with p

degrees of freedom and non-centrality parameter

K2
p,f ξ

2p

Jp(p − 1)
∥
√
r2τττ 1 −

√
r1τττ 2∥2;
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Theorem
Fix ϑϑϑ ∈ H0 and let κn =

√
pηnξ be a bounded (potentially o(1))

sequence. Then, under P
(n)
ϑϑϑ+ℓnνννnτττn,κn,f

, we have the following as
n → ∞ :

(iii) if ηn ≡ 1/
√
n, with ℓn = 1,

(a) Q
(n)
LSV converges weakly to

Y′(Ip −
ZZ′

∥Z∥∥Z∥
)Y,

where Y and Z are two mutually independent Gaussian random

p-vectors, respectively with mean ξ(r
1/2
2 τττ 1 − r

1/2
1 τττ 2) and mean

ξ(θθθ + r1
1/2τττ 1 + r2

1/2τττ 2) and both with covariance matrix Ip;

(b) Q
(n)
H converges weakly to a chi-square random variable with p

degrees of freedom and non-centrality parameter
ξ2∥√r2τττ 1 −

√
r1τττ 2∥2;



Asymptotics under the alt

Theorem
Fix ϑϑϑ ∈ H0 and let κn =

√
pηnξ be a bounded (potentially o(1))

sequence. Then, under P
(n)
ϑϑϑ+ℓnνννnτττn,κn,f

, we have the following as
n → ∞ :

(iv) if ηn = o(1) with
√
nηn → 0 as n → ∞, with ℓn = 1,

(a) Q
(n)
LSV converges weakly to a chi-square random variable with

p − 1 degrees of freedom ;

(b) Q
(n)
H converges weakly to a chi-square random variable with p

degrees of freedom.



Asymptotics under the alt

Figure – Theoretical powers (dotted lines) vs empirical powers (plain lines)
for both tests (as before Hotelling is in orange and pseudo-FvML in blue).
Simulations were made with two 3-dimensional FvML samples of size
respectively 10, 000 and 15, 000 with 2, 500 replications.



Conclusion

The two test we compared here are both valid under weak
identifiability, and shows non-trivial powers. But there isn’t one that
is outperforming the other.

Nice but not as striking results as the two first papers where

(i) we saw that the test used in practice is not valid at all in case
of weak identifiability, while there is an asymptotically
equivalent test that is robust to weak identifiability ;

(ii) we proposed a sign test that is robust to weak identifiability
AND heavy tails/outliers.
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Wrap up

At the end of the day, we saw :

▶ what is weak identifiability (and why it makes inference on the
parameter harder) ;

▶ that it is not purely theoretically interesting but it has some
uses in practice too !

▶ Take-home message : Statistic is cool and awesome O:)
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