Fractals, radix representation and automata

Dipl. Ing. Mag.art. Paul Großkopf BSc.

TU Vienna / ULB
November 25, 2020

Outline

(1) Basics of fractal geometry
(2) Self-similar sets
(3) Canonical Number Systems (CNS)
(4) Büchi Automata
(5) Intersecting the Twin Dragon with rational lines

Mathematical Monsters

What is a fractal?

- Originally found as counter examples (Weierstrass function)
- Isolated works by Cantor, Julia...
- Benoît B. Mandelbrot found fractal geometry late 1970s
- Fractals have a great complexity, details in comp. to smooth, linear objects
- Many fractals have selfsimilar features
- However: in modern research this is not the defining quality!

Sierpinsky gasket I

Approximating the Sierpinsky triangle by cutting out full triangles. What is its area $A\left(S_{\infty}\right)$?

$$
\begin{aligned}
& A\left(S_{0}\right):=A_{0}, A\left(S_{1}\right)=\frac{3}{4} A_{0}, A\left(S_{2}\right)=\frac{3}{4} A\left(S_{1}\right)=\left(\frac{3}{4}\right)^{2} A_{0}, \ldots \\
& A\left(S_{n}\right)=\left(\frac{3}{4}\right)^{n} A_{0}, \ldots, A\left(S_{\infty}\right)=\lim _{n \rightarrow \infty}\left(\frac{3}{4}\right)^{n} A_{0}=0
\end{aligned}
$$

Sierpinsky gasket II

Approx. the Sierpinsky adding triangle outlines. What is its length $L\left(S_{\infty}\right)$?

$$
\begin{aligned}
& L\left(S_{0}\right):=L_{0}, L\left(S_{1}\right)=\frac{4}{3} L_{0} \ldots \\
& L\left(S_{n}\right)=\left(\frac{4}{3}\right)^{n} L_{0}, \ldots, L\left(S_{\infty}\right)=\lim _{n \rightarrow \infty}\left(\frac{4}{3}\right)^{n} L_{0}=\infty
\end{aligned}
$$

The Sierpinsky gasket has area 0 , and length ∞ : What is its dimension?

Dimension theory

Dimension theory deals with the development of purely topological notions of dimension. Demands on a proper dimension function are: [6]
(1) The d-dimensional unit hyper cube in \mathbb{R}^{d} has $\operatorname{dim}=d$.
(2) (Monotonicity) If $X \subseteq Y, \operatorname{dim}(X) \leq \operatorname{dim}(Y)$.
(3) (Countable Stability)

$$
\begin{equation*}
\operatorname{dim}\left(\bigcup_{j=1}^{\infty} X_{j}\right)=\sup _{j \geq 1} \operatorname{dim}\left(X_{j}\right) \tag{1}
\end{equation*}
$$

(4) (Invariance) For \mathcal{F} a subfamily of the homeomorphisms of \mathbb{R}^{n} to \mathbb{R}^{n}, dim shall be invariant, i.e. for $\psi \in \mathcal{F}$

$$
\begin{equation*}
\operatorname{dim}(\psi(X))=\operatorname{dim}(X) \tag{2}
\end{equation*}
$$

Covering dimension

Let (X, τ) be a topological space and \mathcal{U} an arbitrary open covering. We now search for refinements of \mathcal{U} such that maximal $(n+1) \in \mathbb{N}$ sets intersect eachother simultaneously. The minimal number $\operatorname{Cov}(X)$, such that such a refinement exists for all coverings is called Covering dimension.

Theorem
Cov satisfies all conditions and is topologically invariant

Hausdorff dimension I

General idea: A set is s-dimensional, if it has non trivial s-dimensional Volume.

Definition and Proposition

Let (X, d) be a compact metric space and $\mathcal{U}=\left\{U_{i}, i \in I\right\}$ be an open cover of $A \subseteq X . \mathcal{U}$ is called a δ-cover, iff $0 \leq \operatorname{diam}\left(U_{i}\right) \leq \delta$. Define

$$
\begin{equation*}
\mathcal{H}_{\delta}^{s}(A):=\inf \left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(U_{i}\right)^{s} \mid U_{i} \text { is a } \delta \text {-cover of } A\right\} \tag{3}
\end{equation*}
$$

and the s-dimensional Hausdorff measure of A as

$$
\begin{equation*}
\mathcal{H}^{s}(A):=\lim _{\delta \rightarrow 0^{+}} \mathcal{H}_{\delta}^{s}(A) \tag{4}
\end{equation*}
$$

Hausdorff dimension II

Now the important observation is that viewed as a function in s, with values in $[0, \infty]$ the Hausdorff measure only has one point of discontinuity:

Lemma

Let $A \subseteq X$ and $s<t, \delta>0$, then $\mathcal{H}_{\delta}^{t}(A) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(A)$. Further if $\mathcal{H}^{s}(A) \leq \infty$, then $\mathcal{H}^{t}(A)=0$ and if $\mathcal{H}^{t}(A)>0$, then $\mathcal{H}^{s}(A)=\infty$.

Definition

Let (X, d) be a metric space and $A \subseteq X$. The Hausdorff dimension of A is defined as

$$
\begin{equation*}
\operatorname{dim}(A):=\sup \left\{s: \mathcal{H}^{s}(A)=\infty\right\}=\inf \left\{s: \mathcal{H}^{s}(A)=0\right\} \tag{5}
\end{equation*}
$$

Fractals

Theorem dim satisfies all conditions and is invariant under bi-Lipschitz functions

```
Theorem ( [3])
Let \(A \subseteq X\) with \((X, d)\) a metric space. Then \(\operatorname{Cov}(A) \leq \operatorname{dim}(A)\).
```

We are now able to define a fractal.

Definition

Let $A \subseteq X$ with (X, d) a metric space. Then A is fractal, iff $\operatorname{Cov}(A)<\operatorname{dim}(A)$.

Examples:

- Sierpinsky gasket: $\operatorname{dim}\left(S_{\infty}\right)=\frac{\log 3}{\log 2} \approx 1.585$
- Koch curve: $\operatorname{dim}\left(K_{\infty}\right)=\frac{\log 4}{\log 3} \approx 1.262$

Marstrand theorem

How does the dimension of a set in \mathbb{R}^{2} changes by intersetion with a line?
Theorem ([4])
Let E be a Borel set in \mathbb{R}^{2} and L_{x} the line, which is parallel to the y-axix through $(x, 0)$. It holds, that

$$
\begin{equation*}
\operatorname{dim}\left(E \cap\left(L_{x}\right)\right) \leq \max \{\operatorname{dim}(E)-1,0\} \tag{6}
\end{equation*}
$$

for Lebesgue-almost all $x \in \mathbb{R}$.
On the other hand we get have.

Theorem ([4])

Let E be a Borel set in \mathbb{R}^{2} and L_{x} the line, which is parallel to the y-axix through $(x, 0)$. It holds, that

$$
\begin{equation*}
\operatorname{dim}\left(E \cap\left(L_{x}\right)\right) \geq \operatorname{dim}(E)-1 \tag{7}
\end{equation*}
$$

for all $x \in I$, where $I \subset \mathbb{R}$ has positive Lebesgue-measure.

Search for Marstrand dimension

- Combining the two theorems + rotation invariance of dim: Hausdorff dimension reduces by 1 for a large family of cases (uncountable, positive Lebesgue measure).
- In practice the exception cases are much easier to find.
- Except specifically constructed examples full filling Marstrand dimension not one example has been found.

Infinite details

Self-similar sets

Definition

Let (X, d) be a metric space and $\left(f_{i}\right)_{i=1}^{m}: X \rightarrow X$ be contractions. $\varnothing \neq S \subseteq X$ is called self-similar iff

$$
\begin{equation*}
S=\bigcup_{i=1}^{m} f_{i}(S) . \tag{8}
\end{equation*}
$$

Iff the f_{i} are similar contractions, S is called a self-affine set. We call $\left\{f_{i}\right\}$ an iterated function system (IFS) and S its attractor.

Note: not all fractals are self-similar and not all self-similar sets are fractals!

Existence of self-similar sets

Given a family of contractions $\left\{f_{i}\right\}_{i=1}^{m}$ does such an attractor allways exists? The answer is yes! Use Banach Fixed Point Theorem

Theorem

Let (X, d) be a non-empty complete metric space with a contraction $T: X \rightarrow X$. Then T admits a unique fixed-point x in $X: T(x)=x$.

In the context of selfsimilar sets we show:

Theorem

Let $\mathcal{K}\left(\mathbb{R}^{n}\right)$ be the set of all non-empty compact subsets of X and d_{H} the Hausdorff metric. Then $\left(\mathcal{K}\left(\mathbb{R}^{n}\right), d_{H}\right)$ is a complete metric space. Furthermore given $\left(f_{i}\right)_{i=1}^{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ contractions, then the map $F=\cup_{i} f_{i}: \mathcal{K}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}\left(\mathbb{R}^{n}\right)$, called the Hutchinson operator, is a contraction.

Construction self-similar sets

Recall the proof of Banach Fixed point Theorem:

Proposition

x can be found as follows: start with an arbitrary element $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}$ by $x_{n}:=T\left(x_{n-1}\right)$ for $n \geq 1$. Then $\lim _{n \rightarrow \infty} x_{n}=x$.

So no matter with what non empty compact set you start by applying the Hutchinson operator successively you can approximate the self-similar attractor.

The Knuth Twin Dragon

Now consider $\left\{f_{0}, f_{1}\right\}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f_{0}(x)=B^{-1} x$, $f_{1}(x)=B^{-1}(x+(1,0))$ and

$$
B=\left(\begin{array}{cc}
-1 & -1 \tag{9}\\
1 & -1
\end{array}\right) .
$$

The matrix B^{-1} describes a rotation of 45° and a contraction of $|\operatorname{det}(B)|^{-1}=0.5$.

The Knuth Twin Dragon

Proposition ([2])

Let \mathcal{K} be the Twin Dragon, that is the attractor of the IFS $\left\{f_{0}, f_{1}\right\}$ with $f_{0}(x)=B^{-1} x, f_{1}(x)=B^{-1}(x+(1,0))$ and

$$
B=\left(\begin{array}{cc}
-1 & -1 \tag{10}\\
1 & -1
\end{array}\right)
$$

Then $\operatorname{dim}(\mathcal{K})=2$,

$$
\begin{equation*}
\operatorname{dim}(\partial \mathcal{K})=\frac{\log \left(\frac{\sqrt[3]{3 \sqrt{87}+28}}{3}+\frac{1}{3 \sqrt[3]{3 \sqrt{87}+28}}+\frac{1}{3}\right)}{\log \sqrt{2}}=1.523627 \ldots \tag{11}
\end{equation*}
$$

Address of a point

On the other hand the Knuth Twin dragon \mathcal{K} is the fixed point of $F=f_{0} \cup f_{1}$. So \mathcal{K} dissolves into the images of f_{0} and f_{1}.

Applying F once again we have a four pieces of \mathcal{K} :

$$
f_{0}\left(f_{0}(\mathcal{K})\right), f_{0}\left(f_{1}(\mathcal{K})\right), f_{1}\left(f_{0}(\mathcal{K})\right), f_{1}\left(f_{1}(\mathcal{K})\right)
$$

By separating \mathcal{K} further and further we can assign to every point $x \in \mathcal{K}$ and address, that is an infinite sequence $\omega=\left(d_{1}, d_{2,} d_{3}, \ldots\right) \in\{0,1\}^{*}$

Decimal-, Binary-, (-10)-ary numbers?

It is a well know fact that for any base $b \in \mathbb{N} \backslash\{0\}$ every natural number γ can be represented uniquely in the form

$$
\begin{equation*}
\gamma=\sum_{j=0}^{n} d_{j} b^{j} \tag{12}
\end{equation*}
$$

with digits $d_{j} \in\{0, \ldots, b-1\}$. What happens if we also allow negative bases?

$$
\begin{array}{cccc}
& 2 & -10 & -2 \\
10 & 2 & -10 & -2 \\
100 & 4 & 100 & 4 \tag{13}\\
110 & 6 & 90 & 2 \\
11 & 3 & -9 & -1
\end{array}
$$

Choosing negative bases $b \in \mathbb{Z}$ and digits $\{0, \ldots,|b|\}$ allows us to uniquely represent all integers!

Complex bases

What happens if we allow complex bases?

	2	-10	-2	$-i-1$
10	2	-10	-2	$-i-1$
100	4	100	4	-2
110	6	90	2	$-i-3$
11	3	-9	-1	$-i$

When is the set of representable numbers $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$?

Canonical Number Systems (CNS)

Definition (Radix Representation)

Let $P(x)=x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0} \in \mathbb{Z}[x]$ monic polynomial with $m \geq 1$. Let $\mathcal{R}=\mathbb{Z}[x] / P(x) \mathbb{Z}[x]$ and \mathcal{N} a complete residue system $\bmod \left|b_{0}\right|$. The pair $(P(x), \mathcal{N})$ is called a NS in \mathcal{R}, if each $\gamma \in \mathcal{R}$ admits a unique representation of the form

$$
\begin{equation*}
\gamma=\sum_{j=0}^{n} d_{j} x^{j} \tag{15}
\end{equation*}
$$

where $d_{j} \in \mathcal{N}, n \in \mathbb{N}$ minimal, such that $d_{i}=0$ for $i>n$. If $\mathcal{N}=\left\{0,1, \ldots,\left|b_{0}\right|-1\right\}$ we call the NS a CNS.

The fundamental domain I

Note that given a number $x \in \mathbb{C}$ we can write $x=x^{\prime}+r$ where $x^{\prime} \in \mathbb{Z}[i]$ and r with a digit expansion that has only negative exponents. Given a CNS let

$$
\begin{equation*}
\mathcal{F}=\left\{\sum_{j=1}^{\infty} b^{-j} d_{j}, d_{j} \in \mathcal{N}\right\} . \tag{16}
\end{equation*}
$$

We can calculate \mathcal{F} for the following bases:

- $10:[0,1]$
- 2 : $[0,1]$
- $-10:\left[-\frac{10}{11}, \frac{1}{11}\right]$
- $-2:\left[-\frac{2}{3}, \frac{1}{3}\right]$
- -1 - i ??????

The fundamental domain II

We can identify \mathbb{C} with \mathbb{R}^{2} via

$$
\begin{equation*}
\Phi(a+i b):=\binom{a}{-b} \tag{17}
\end{equation*}
$$

and multiplication with $c+i d$ by matrix multiplication from the right with

$$
B=\left(\begin{array}{cc}
c & d \tag{18}\\
-d & c
\end{array}\right)
$$

Now if $x \in \mathcal{F}$, then it has a digit expansion $0 . d_{1} d_{2} d_{3} \ldots$ in base b with $d_{j} \in \mathcal{N}$. Multiplication with b yields $b x=d_{1} \cdot d_{2} d_{3}, \ldots \in \cup_{d \in \mathcal{N}}(\mathcal{F}+d)$

The fundamental domain III

Definition

Let $(P(x), \mathcal{N})$ be a NS and Φ, B as described above. The fundamental domain $\mathcal{F} \subset \mathbb{R}^{n}$ of the NS is defined by

$$
\begin{equation*}
B \mathcal{F}=\bigcup_{d \in \mathcal{N}}(\mathcal{F}+\Phi(d)) \Leftrightarrow \mathcal{F}=\bigcup_{d \in \mathcal{N}}\left(B^{-1} \mathcal{F}+B^{-1} \Phi(d)\right) \tag{19}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mathcal{F}=\left\{\sum_{i=1}^{\infty} B^{-i} \Phi\left(d_{i}\right), d_{i} \in \mathcal{N}\right\} . \tag{20}
\end{equation*}
$$

The base $-i-1$

We recall the definition of the Twin dragon

Definition

The Twin Dragon $\mathcal{K} \subset \mathbb{R}^{2}$ is the attractor of the IFS $\left\{f_{1}, f_{2}\right\}$ with $f_{1}(x)=B^{-1} x, f_{2}(x)=B^{-1}(x+(1,0))$ and

$$
B=\left(\begin{array}{cc}
-1 & -1 \tag{21}\\
1 & -1
\end{array}\right)
$$

- Matrix corresponds to the complex number $\alpha=-1-i$ with minimal polynomial $P(x)=x^{2}+2 x+2$
- P forms a CNS:

Every complex number has a radix representation in base -1-i and digits 0,1.

- The fundamental domain of this CNS is the Twin Dragon.

Fractal tilings

- The plane can be tiled by the Twin Dragon using the lattice $\mathbb{Z}[i]$.
- The address of a point $x \in \mathcal{K}$ coincides with the digit expansion in base α.
- These algebraic number theoretic properties are used to determine the geometric structure (Hausdorff dimension etc.)

Characterization of the boundary

The boundary of \mathcal{K} is fractal. What characterizes the points in the boundary?
This leads to the notion of Büchi Automata.

What are automata?

Directed graphs with vertices called states. Further all the arrows are labeled over an alphabet \mathcal{A}. We allow multiple arrows between two states and also different arrows with the same label (non deterministic). We call an automaton finite, if it has only finitely many states.

Figure: An automaton accepting $\left\{a c[d e]_{\infty}, a c[e d]_{\infty}, b c[d e]_{\infty}, b c[e d]_{\infty}\right\}$
Now we can describe paths by the words over \mathcal{A} describing the labels. It is possible to define infinite words, and automata accepting infinite paths. We call these Büchi automata.

Figure: The automaton \mathcal{G} characterizing $\partial \mathcal{K}$

Intersections with rational lines

The technique proposed in Akiyama and Scheicher, Intersection two-dimensional fractals with lines [1], is to find a Büchi automaton to characterize the points in the intersection with a line with rational parameters.

Theorem

The intersection $\mathcal{K} \cap\{y=0\}$ consists of the line segment $\left\{(x, 0): x \in\left[-\frac{4}{5}, \frac{1}{5}\right]\right\}$ and the intersection $\partial \mathcal{K} \cap\{y=0\}$ consists only of the endpoints of the line segment. The intersection $\mathcal{K} \cap\{x=0\}$ consists of the line segment $\left\{(0, y): y \in\left[-\frac{2}{5}, \frac{3}{5}\right]\right\}$ and the intersection $\partial \mathcal{K} \cap\{x=0\}$ consists only of the endpoints of the line segment.

My own results

I investigated the two diagonals and found a similar result. [5]

Theorem

The intersection $\mathcal{K} \cap \Delta$ consists of the line segment $\left\{(x, x): x \in\left[-\frac{3}{5}, \frac{2}{5}\right]\right\}$. The intersection $\mathcal{K} \cap \bar{\Delta}$ consits of the line segment $\left\{(x,-x): x \in\left[-\frac{2}{10}, \frac{3}{10}\right]\right\}$. The intersections with the boundary are only the endpoints.

Vertical lines and behavior in the limit

- Further I found an infinite class of vertical lines that intersect only in intervals.
- A lemma shows that, for certain values $R \in\left[-\frac{13}{15}, \frac{7}{15}\right]$ we can approximate the line $\{x=R\}$ by the lines $\left\{x=R_{N}\right\}$, whose Büchi automata can be easily determined.
- In the limit these Büchi automata "approximate" a infinite automaton, but in some cases it can be represented again as a Büchi automaton.

A somewhat more interesting result

Using this method I could find a line with a more interesting dimension, but still not of Marstrand type. [5]

Theorem
$\mathcal{K} \cap\left\{x=-\frac{1}{5}\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x=-\frac{1}{5}, y=0 .\left[d_{1} d_{2} d_{3} d_{4} \ldots\right]_{-4}: d_{i} \in\{-2,0,1,3\}\right\}$
The intersection with the boundary $\partial \mathcal{K}$ are points with $y=0 .\left[d_{1} d_{2} d_{3} d_{4} \ldots\right]_{16}$ with either $d_{i} \in\{-14,-12,-8,-6\}$ for all i or $d_{i} \in\{-1,3,9,11\}$ for all i. The Hausdorff dimension of $\mathcal{K} \cap\left\{x=-\frac{1}{5}\right\}$ is 1 and

$$
\begin{equation*}
\operatorname{dim}\left(\partial \mathcal{K} \cap\left\{x=-\frac{1}{5}\right\}\right)=\frac{\log 3}{\log 4} \approx 0.7925 \tag{22}
\end{equation*}
$$

Outlook

- It can be proven, that rational lines never intersect the Twin Dragon with Marstrand dimension.
- There already exists a draft of a paper involving Shigeki Akiyama, Benoît Loridant, Wolfgang Steiner and myself, including my results and the proof of this conjecture.

直 S．Akiyama and K．Scheicher，Intersecting two－dimensional fractals with lines，Acta Scientiarium Mathematicarum， 71 （2005）， pp．555－580．

目 P．Duvall，J．Keesling，and A．Vince，The hausdorff dimension of the boundary of a self－affine tile，Jounral of the London Mathematical Society， 2 （2000），pp．748－760．

EG．A．Edgar，Measure，Topology，and Fractal Geometry （Undergraduate Texts in Mathematics），Springer， 2013.
－K．J．Falconer，The Geometry of Fractal Sets（Cambridge Tracts in Mathematics），Cambridge University Press， 1985.

目 P．Grosskopf，Intersecting the twin dragon with rational lines， Master＇s thesis，mar 2020.
－M．Yamaguchi，M．Hata，and J．Kigami，Mathematics of Fractals（Translations of Mathematical Monographs），Amer Mathematical Society， 1997.

Thank you for your attention!
 I am looking forward to your questions!

