Contact structures

Thomas DUMONT

October 13, 2021

Thomas DUMONT

Contact geometry

1 Introduction

2 History

3 Contact manifolds

4 Existence and Classification

Definition

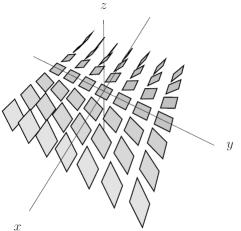
Definition (Contact structure)

A contact structure on a manifold M of odd dimension 2n + 1 is a hyperplane field ξ which is maximally non-integrable.

Introduction

Hyperplane field

• A hyperplane field is the association with each point of M of a codimension 1 plane of its tangent space.



Introduction

Maximally non-integrable

• A hyperplane field is maximally integrable if for each point x of M, there exists a submanifold $N \subset M$ of dimension 2n passing through x and such that for all $n \in N$, $T_n N = \xi_n$. The set of N is called a foliation.

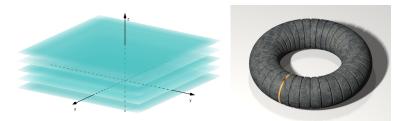


FIGURE – Foliations on \mathbb{R}^3 and on the torus $S^1 \times S^1$.

Definition with a differential 1-form

We can see this hyperplane field as the kernel of a differential 1-form, where a 1-form is an application which associate with each point a linear form on its tangent space.

$$\alpha: \mathbb{R}^n \to \mathscr{L}(T\mathbb{R}^n, \mathbb{R})$$

Example

On \mathbb{R}^3 , (x, y, z), we can consider the tangent space of each point (x, y, z) as \mathbb{R}^3 , with coordinates $(\partial_x, \partial_y, \partial_z)$.

Let the differential form $\alpha = dz$, which associate with a point (x, y, z) the linear form

$$\alpha_{(x,y,z)}: A = (a_1, a_2, a_3) \mapsto a_3$$

whose kernel is

$$\ker \alpha = \langle \partial_x, \partial_y \rangle \subset T_{(x,y,z)} \mathbb{R}^3$$

Thomas DUMONT

How can we define the fact for ker α to be maximally integrable or not?

- Frobenius theorem : $\alpha \wedge d\alpha \equiv 0$. In the previous example on \mathbb{R}^3 , we have $\alpha = dz$, so $d\alpha = 0$.;
- Contact condition : $\alpha \wedge (d\alpha)^n \neq 0$.

Definition (Contact structure)

A contact structure on a amanifold M of odd dimension 2n + 1 is a hyperplane field ξ defined as the kernel of a differential 1-form α , satisfying on each point of M,

 $\alpha \wedge (d\alpha)^n \neq 0$

The form α is called a contact form and the pair (M,ξ) a contact manifold.

Example

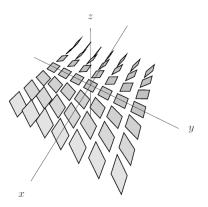


FIGURE – The standard contact structure on \mathbb{R}^3 is given by $\alpha = dz - xdy$.

In general, the standard contact structure on \mathbb{R}^{2n+1} , with coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n, z)$ is $\alpha = dz - \sum_{i=1}^{n} x_i dy_i$.

Thomas DUMONT

Connection with symplectic geometry

• Let α be a contact for on \mathbb{R}^{2n+1} . Then the form $d\alpha$ is a symplectic form on the vector space ker α .

 \implies A contact manifold is always of odd dimension.

 Let (M, ξ = ker α) be a contact manifold. Then the manifold M × ℝ, equipped with ω = d(e^tα) is a symplectic manifold, called the symplectisation of (M, ξ).

Likewise, from a symplectic manifold $(W, \omega = d\lambda)$, we can build a contact manifold, taking $W \times \mathbb{R}$ with the 1-form $\alpha = dz - \lambda$. This new space is the *contactisation* of (W, ω) .

Connection with symplectic geometry

• We have a Darboux theorem for contact forms : : On all contact manifold (M, α) , there exists local coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n, z)$ on M such that in these coordinates,

$$\alpha = dz - \sum_{1}^{n} x_i dy_i.$$

2 History

3 Contact manifolds

4 Existence and Classification

History

Lie contact transformations

We consider \mathbb{R}^2 with coordinates (x, z). We call *line element* a line passing through (x, z) of slope p.

{line elements}
$$\simeq (\mathbb{R}^3, (x, z, p)).$$

Equation for a line of slope $p \ p : dz - pdx = 0$. On the space of line elements, this form defines a contact structure.

Definition

A contact transformation is a diffeomorphism of \mathbb{R}^3

$$f:(x,z,p)\mapsto(x_1,z_1,p_1)$$

such that

$$dz_1 - p_1 dx_1 = \rho(x, z, p)(dz - pdx)$$

for a non vanishing function $\rho : \mathbb{R}^3 \to \mathbb{R}$.

Example : Legendre transformation

Example

Let $z : \mathbb{R} \to \mathbb{R}$ be a strictly convex function such that $x \mapsto z'(x)$ is a diffeomorphism of \mathbb{R} .

For all $p \in \mathbb{R}$, we define the function Z_p :

$$Z_p(x) = px - z(x).$$

It admit a unique maximum x = x(p) given by

$$\frac{dz}{dx}(x(p)) = p.$$

Let us define a new function z_1 :

$$z_1(p) = Z_p(x(p)) = px(p) - z(x(p)) = \max_{x \in \mathbb{R}} Z_p(x)$$

History

Example : Legendre transformation

$$\frac{dz_1}{dp}(p) = x(p) + p\frac{dx}{dp}(p) - \frac{dz}{dx}(x(p))\frac{dx}{dp}(p) = x(p).$$
$$\implies dz_1 - x(p)dp = 0$$

The transformation

$$f: (x, z, p) \mapsto (x_1 := p, z_1 := px - z, p_1 := x)$$

is a contact transformation of \mathbb{R}^3 (with $\rho \equiv 1$), called the *Legendre* transform of z.

1 Introduction

2 History

- 3 Contact manifolds
 - Theorems and tools
 - PDE of first order ([1])

4 Existence and Classification

Reeb vector field

Definition

Associated with a contact form α , one has the **Reeb vector field** R_{α} , uniquely defined by the equations :

- $d\alpha(R_{\alpha},-)\equiv 0$;
- $\alpha(R_{\alpha}) \equiv 1.$

Example

On \mathbb{R}^3 with the standard contact form $\alpha = dz - xdy$, the Reeb vector field is ∂_z .

Contactomorphisms

Definition

Two contact manifolds (M_1, ξ_1) et (M_2, ξ_2) are **contactomorphic** if there is a difféomorphism $f : M_1 \to M_2$ with $Tf(\xi_1) = \xi_2$, where $Tf : TM_1 \to TM_2$ denotes the differential of f.

If $\xi_i = \ker \alpha_i$, i = 1, 2, this is equivalent to saying that α_1 and $f^* \alpha_2$ give the same hyperplane field, and equivalent to the existence of a non vanishing function $\lambda : M_1 \to \mathbb{R} \setminus \{0\}$ such that $f^* \alpha_2 = \lambda \alpha_1$.

We can speak of a strict contactomorphism between stricts contact manifolds (M_1, α_1) and (M_2, α_2) if $f^*\alpha_2 = \alpha_1$.

Example

• \mathbb{R}^3 with its standard contact structure $\alpha = dz - xdy$ is contactomorphic to \mathbb{R}^3 with cylindrical coordinates (r, φ, z) and contact structure $\beta = dz + r^2 d\varphi$, by the diffeomorphism

$$f(x, y, z) = \left(\frac{x+y}{2}, \frac{y-x}{2}, z + \frac{xy}{2}\right).$$

- However, (R³, ξ = ker α) is not contactomorphic to R³ with the 1-form α_{ot} = cos(r)dz + r sin(r)dφ, in cylindrical coordinates (r, φ, z). This was proved by D. Bennequin in 1983.
- $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$ is contactomorphic to $S^{2n+1} \setminus \{p\}$, where p is any point of S^{2n+1} , with its standard contact structure $\alpha_0 = \sum_{i=1}^{n+1} (x_i dy_i y_i dx_i).$

Theorem (**Gray stability**)

Let ξ_t , $t \in [0, 1]$ be a smooth family of contact structures on a closed manifold M. Then there is an isotopy $(\psi_t)_{t \in [0,1]}$ of M such that

$$T\psi_t(\xi_0) = \xi_t \text{ pour tout } t \in [0,1]$$

Warning, Gray stability only applies to contact structures, not contact forms!

Lemma

If $f: (M_1, \alpha_1) \to (M_2, \alpha_2)$ is a strict contactomorphism between two strict contact manifolds, then the Reeb vector fields verify $Tf(R_1) = R_2$.

Definition

Let (M,ξ) be a contact manifold. A submanifold L of (M,ξ) is called an isotropic submanifold (or integrable) if $T_pL \subset \xi_p$ for all $p \in L$.

An isotropic submanifold $L \subset (M^{2n+1}, \xi)$ of maximal dimension n is called a **Legendrian submanifold**.

Let (M, ξ) be a contact manifold. A submanifold M' of M with a contact structure ξ' is called a **contact submanifold** of (M, ξ) if $TM' \cap \xi_{|M'} = \xi'$.

Example

 \bullet Thermodynamics (J.W. Gibbs, 1873) .

We consider the following quantities : v the volume, p the pressure, t the temperature, ε the energy, ν the entropy of a given body in any state, W the work done et H the heat received by the body from passing in one state to another. These are subjects to the relations expressed by the following differential equations :

$$d\varepsilon = dH - dW, \ dW = pdv, \ dH = td\nu.$$

Eliminating dW et dH, we have

$$d\varepsilon = td\nu - pdv.$$

This last equations defines a contact structure on the phase space of dimension 5. The set of possible state of a body defines a Legendrian submanifold for this contact form.

Thomas DUMONT

Partial differential equations of first order

• We consider the following Cauchy problem :

$$\begin{cases} \Phi(x, f, f') = 0\\ f(x_0) = u_0 \text{ et } f'(x_0) = p_0 \end{cases}$$

for $f : \mathbb{R}^n \to \mathbb{R}$ and $x_o \in V^{n-1}$, initial data;

Contact structure on the 1-jets space

We consider

$$J^{1}(\mathbb{R}^{n},\mathbb{R}) = \left\{ (x, f(x), f'(x)) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \mid f : \mathbb{R}^{n} \to \mathbb{R} \right\}$$

manifold of dimension 2n + 1, equipped with the coordinates (x, u, p).

- There is a contact form defined by $\alpha = du pdx$.
- The 1-jet of a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ at a point $x \in \mathbb{R}^n$ is the set

$$J_f^1(x) = \{f(x), f'(x)\}$$

• The 1-graph of f is the submanifold formed by 1-jets of f at every point x of \mathbb{R}^n :

$$J_f^1 = \left\{ x, f(x), f'(x) | x \in \mathbb{R}^n \right\}$$

It is a submanifold of dimension n of $J^1(\mathbb{R}^n, \mathbb{R})$.

Reformulating the equation

In order to solve $\Phi(x, u, p) = 0$, we have, in $J^1(\mathbb{R}^n, \mathbb{R})$:

- A submanifold $E^{2n} = \{(x, u, p) \mid \Phi(x, u, p) = 0\}$;
- A submanifold $N^{n-1} = \{(x_0, u_0, p_0) \mid x_0 \in V^{n-1}\};$

and we are looking for a submanifold $Y^n \subset E^{2n}$, containing N^{n-1} , and which is the 1-graph of a function f.

Geometry on a hypersurface in a contact manifold

Let E^{2n} be a smooth hypersurface in a contact manifold (M^{2n+1}, Π) .

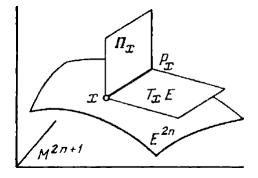
Definition

 E^{2n} is said to be **non-characteristic** if its tangent plane $T_x E$ is transverse to Π_x at every point $x \in E$. In this case, the intersection

 $P_x = T_x E \cap \Pi_x$

is called the **characteristic plane** at the point x.

Geometry on a hypersurface in a contact manifold

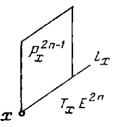


Characteristic direction on a hypersurface

Definition

The characteristic direction l_x at a point x on a non characteristic hypersurface E is the orthogonal, in the contact plane Π_x , of the characteristic plane P_x for the symplectic form $d\alpha$.

 $(\Pi_x \ni X) \in l_x \iff \forall \ Y \in T_x E, \ d\alpha(X,Y) = 0$



The Cauchy problem for the field of characteristic directions

Definition

The **Cauchy problem** for a hypersurface E^{2n} in a contact manifold (M^{2n+1}, Π) with initial manifold N^{n-1} consist of determining an integral manifold Y^n of the field of contact planes, lying in E^{2n} , and containing the initial manifold N^{n-1} .

The Cauchy problem for the field of characteristic directions

Theorem (V. Arnold)

Let $x \in N^{n-1}$ be a non-characteristic point of the initial manifold N^{n-1} $(l_x \notin T_x N).$

There exists a neighbordhood U of x such that the solution of the Cauchy problem for $E \cap U$ with initial condition $N \cap U$ exists and is locally unique.

The manifold Y consists of characteristics passing through the points of the initial manifold N.

1 Introduction

2 History

3 Contact manifolds

4 Existence and Classification

- Dimension 3 (Y. Eliashberg, 1989)
- Higher dimension (M. Borman, Y. Eliashberg, E. Murphy, 2015)

Existence : Martinet's construction

Theorem (Martinet, 1971)

 $Every \ closed, \ orientable \ 3-manifold \ M \ admits \ a \ contact \ structure$

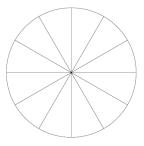
The proof uses the fact that S^3 admits a contact structure and Lickorish-Wallace Theorem : Every orientable, connected, closed manifold of dimension 3 can be obtain from S^3 by surgery along a collection of embedded circles.

Dichotomy of contact structures (Y. Eliashberg, 1989)

Denote by Δ the disc $\{z = 0, \rho \leq \pi\} \subset \mathbb{R}^3$ with cylindric coordinates (ρ, ϕ, z) . The boundary $\partial \Delta$ of this disc is a Legendrian curve for ξ_{ot} defined by

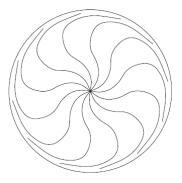
$$\cos(\rho)dz + \rho\sin(\rho)d\phi$$

Its characteristic foliation consists of the radius of the disc, and every point of the boundary circle is singular.



Instead we will consider $\Delta = \{z = \varepsilon \rho^2, \rho \le \pi\}.$

This new disc is close to the original, tangent to ξ_{ot} only at the origin, and has the following foliation.



 $\ensuremath{\mathsf{Figure}}$ – Characteristic foliation of the new Δ .

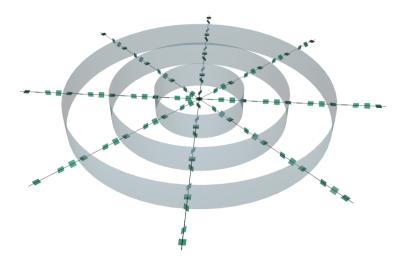
Overtwisted contact structures

Definition

This disc is called the standard overtwisted disc. A contact structure on a connected 3-manifold amitting a contact embedding of this disc into M is called overtwisted. Otherwise, it is called tight.

Example

The contact structure defined by $\cos(\rho)dz + \rho\sin(\rho)d\varphi$ is overtwisted.



Classification of overtwisted contact structures

Theorem (Y. Eliashberg, 1989)

Let M be a connexe, oriented 3-manifold. Let Distr(M) be te set of plane fields on M et $Cont^{ot}(M)$ be the set of overtwisted contact structures. The inclusion

$$j: \operatorname{Cont}^{ot}(M) \to \operatorname{Distr}(M)$$

is a weak homotopy equivalence : it induces a bijection between the arcwise connected components of π_0 , et isomorphisms between the higher homotopy groups $\pi_k, k \geq 1$.

Bijection on π_0 .

- $\underline{\text{Injection}} = \text{Homotopy among plane fields} \implies \text{homotopy among contact structures.}$
- <u>Surjection</u> = Every plane field is homotopic to an overtwisted contact structure.

Classification of overtwisted contact structures in all odd dimension

Definition

An almost contact structures on a manifold M is a pair (α, β) , where α is a non-vanishing 1-form on M, et β a non-degenerate 2-form on $\xi = \{\alpha = 0\}.$

Let M be a (2n + 1)-manifold, $A \subset M$ a closed subspace such that $M \setminus A$ is connected. Let ξ_0 be an almost contact structure on M which is a genuine contact structure on a neighborhood of A. Denote by $\mathfrak{Cont}_{ot}(M, A, \xi_0)$ the space of contact structures on M, overtwisted on $M \setminus A$ and coincide with ξ_0 on a neighborhood of A, and $\mathfrak{cont}(M, A, \xi_0)$ the space of almost contact structures that agree with ξ_0 on a neighborhood of A. Existence and Classification Murphy, 2015)

Classification of overtwisted contact structures in all odd dimension

Theorem (M. Borman, Y. Eliashberg, E. Murphy, 2015) The inclusion

$$j:\mathfrak{Cont}_{ot}(M,A,\xi_0)\to\mathfrak{cont}(M,A,\xi_0)$$

 $induces \ an \ isomorphism$

$$j_*: \pi_0(\mathfrak{Cont}_{ot}(M, A, \xi_0)) \to \pi_0(\mathfrak{cont}(M, A, \xi_0))$$

Classification of tight contact structures

Theorem (Décomposition en somme connexe)

There is a one-to-one correspondence between the set of tight contact structures on a connected sum $M = M_1 \# M_2$ and the product of the sets of tight contact structures on M_1 and M_2 .

Theorem (V. Colin, E. Giroux, K.Honda, 2003)

Every 3-manifold has only finitely many homotopy classes of 2-plane fields which carry tight contact structures.

Theorem (Y. Eliashberg)

The standard contact structure $\sum_{i=1}^{2} x_i dy_i - y_i dx_i$ on S^3 is the unique tight contact structure up to isotopy.

This theorem gives an other proof of the Cerf Theorem

Theorem (Cerf, 1968)

Any diffeomorphism of S^3 extends to D^4 .

Bibliography

- V. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations.
 Springer-Verlag, 1988.
- H. Geiges, An Introduction to Contact Topology. Cambridge, 2008.
- Y. Eliashberg, "Classification of overtwisted contact structures on 3-manifolds," *Inventiones mathematicae*, 1989.
- M. Borman, Y. Eliashberg, and E. Murphy, "Existence and classification of overtwisted contact structures in all dimension," *Acta Mathematica*, 2015.
- V. Arnold, Mathematical Methods of Classical Mechanics. Springer-Verlag, 1989.

