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Definition
A subset A ⊆ Cn is an algebraic set if there exists an ideal
I ∈ C[X1, ...,Xn] such that

A = {x ∈ Cn|∀P ∈ I ,P(x) = 0} .

The topology of Cn such that closed sets are algebraic sets is
Zariski topology.

Definition
An algebraic set V is an affine algebraic variety if it is irreducible
(there is no pair of nontrivial closed sets covering V ).
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Ideal of an affine variety and coordinate ring

Definition
To an algebraic variety V we can associate an ideal given by :

I(V ) := {P ∈ K|∀x ∈ V ,P(x) = 0} .

Definition
To an algebraic variety V ⊆ Cn we can associate a ring, named
coordinate ring, given by :

C[V ] := C[X1, ...,Xn]/I(V ).
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An exemple

Exemple
The cuspidal curve is the curve
defined by the equation Y 2 = X 3.
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The complex torus

Remark
For a given polynomial f ∈ C[X1, ...,Xn], we can see the open set
U = Cn \ {x |f (x) = 0} as an algebraic variety of Cn+1

corresponding to the ideal ⟨1− fY ⟩ ⊆ C[X1, . . . ,Xn,Y ].

Definition
The complex torus is (C∗)n = Cn \ V(X1 · · ·Xn) with coordinate
ring C[X±1

1 , . . . ,X±1
n ].
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Toric varieties

Definition
An algebraic variety V containing a torus as dense open subset and
such that the torus acts (algebraically) on the variety is called a
toric variety.
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Character of a torus

Definition
Let T be a torus, a character m of T is a group homomorphism
χm : T → C∗.
The set of characters forms a group that we will denote M.
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Character lattice

Remark
All characters are of the form :

χm : (C∗)n → C∗, (t1, . . . , tn) 7→ ta1
1 . . . tann .

Therefore M ≃ Zn and we will write m = (a1, . . . , an). The group
Zn is the definition of lattice. Thus M is a lattice (i.e. a free
abelian group of finite rank).
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The combinatorics theorem

Theorem
Let T be a torus and A = {m1, . . . ,ms} ⊂ M, consider the map

ϕA : T → Cs , t 7→ (χm1(t), . . . , χms (t)).

Then the Zariski closure of the image of ϕA is a toric variety and
all toric varieties arise this way.

We will denote the variety generated this way YA.
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Caracterizing the toric ideals

Corollary

Let T be a torus and A = {m1, . . . ,ms} ⊂ M, consider the
sublattice

L =

{
u ∈ Zs |

s∑
i=1

uimi = 0

}
.

Then I(YA) = ⟨xα − xβ|α, β ∈ Ns , α− β ∈ L⟩.
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Generate a toric variety with a cone

Process
Let us fix n ∈ N∗, we look at the following steps :

1 We fix a polyhedral cone σ in Rn.
2 We look at its dual σ∨ in Rn.
3 We denote S the set of points of σ∨ ∩ Zn.
4 The variety Uσ is the variety with coordinate ring
⟨x s |s ∈ S⟩ ⊆ C[X1, ...,Xn].
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Main result

Theorem
The variety Uσ is a normal toric variety and all normal toric
varieties arise this way.

Definition
An algebraic variety V is normal if its coordinate ring K[V ] is
normal, ie if an element v ∈ K(V ) is a solution of a monic
polynomial of K[V ][X ], then v ∈ K[V ].
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Abstract varieties

Definition
An abstract variety is the collection of a set of affine varieties (Vα)
glued together by isomorphisms on open sets.

Example

The projective plane P1(C) is the union of C = V1 and C = V2
with the gluing g : V1 \ {0} → V2 \ {0} , x 7→ 1/x .
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Equivalent of cones for abstract varieties

How can we adapt cones to generate abstract toric varieties ?

https://collections.lacma.org/node/225805
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Fan

Definition
A fan Σ in Rn is a finite collection of cones in Rn which is stable
by restriction to faces of cones and such that the intersection of
two cones of Σ is the greatest common face of those two cones.
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This is the good notion !

Theorem
The variety XΣ generated by the fan Σ is a normal toric variety and
all normal toric varieties arise this way.
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Orbit-cone correspondence

Theorem
Let Σ be a fan and XΣ the corresponding toric variety. Let us
denote T the torus of XΣ, then :

1 There is a bijective correspondence

{cones σ ∈ Σ} ←→ {T − orbits of XΣ} .

2 The dimension of the orbit corresponding to σ is the
codimension of σ.

3 The affine variety Uσ is the union of the orbits of the faces of
σ.

4 For two cones τ, σ ∈ Σ, τ is a face of σ if and only if the orbit
corresponding to σ is a subset of the closure of the orbit
corresponding to τ .
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Conclusion

Thank you for your attention !
Feel free to ask any question.

(Bibliography on demand.)
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