Introduction to toric varieties

Thomas Saillez

Advisor
Špela Špenko

ULB

Thursday the 24th, 2022

Outline

(1) Notions of algebraic geometry
(2) Affine toric varieties
(3) Abstract toric varieties

Outline

(1) Notions of algebraic geometry
(2) Affine toric varieties
(3) Abstract toric varieties

Definition

A subset $A \subseteq \mathbb{C}^{n}$ is an algebraic set if there exists an ideal $I \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
A=\left\{x \in \mathbb{C}^{n} \mid \forall P \in I, P(x)=0\right\}
$$

The topology of \mathbb{C}^{n} such that closed sets are algebraic sets is Zariski topology.

Definition

A subset $A \subseteq \mathbb{C}^{n}$ is an algebraic set if there exists an ideal $I \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
A=\left\{x \in \mathbb{C}^{n} \mid \forall P \in I, P(x)=0\right\} .
$$

The topology of \mathbb{C}^{n} such that closed sets are algebraic sets is Zariski topology.

Definition

An algebraic set V is an affine algebraic variety if it is irreducible (there is no pair of nontrivial closed sets covering V).

Ideal of an affine variety and coordinate ring

Definition

To an algebraic variety V we can associate an ideal given by :

$$
\mathcal{I}(V):=\{P \in \mathbb{K} \mid \forall x \in V, P(x)=0\} .
$$

Definition
To an algebraic variety $V \subseteq \mathbb{C}^{n}$ we can associate a ring, named
coordinate ring, given by

Ideal of an affine variety and coordinate ring

Definition

To an algebraic variety V we can associate an ideal given by :

$$
\mathcal{I}(V):=\{P \in \mathbb{K} \mid \forall x \in V, P(x)=0\}
$$

Definition

To an algebraic variety $V \subseteq \mathbb{C}^{n}$ we can associate a ring, named coordinate ring, given by :

$$
\mathbb{C}[V]:=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(V)
$$

An exemple

Exemple

The cuspidal curve is the curve defined by the equation $Y^{2}=X^{3}$.

Outline

(1) Notions of algebraic geometry

(2) Affine toric varieties
(3) Abstract toric varieties

The complex torus

Remark

For a given polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, we can see the open set $U=\mathbb{C}^{n} \backslash\{x \mid f(x)=0\}$ as an algebraic variety of \mathbb{C}^{n+1} corresponding to the ideal $\langle 1-f Y\rangle \subseteq \mathbb{C}\left[X_{1}, \ldots, X_{n}, Y\right]$.

Definition
The complex torus is $\left(\mathbb{C}^{*}\right)^{n}=\mathbb{C}^{n} \backslash \mathcal{V}\left(X_{1} \cdots X_{n}\right)$ with coordinate

The complex torus

Remark

For a given polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, we can see the open set $U=\mathbb{C}^{n} \backslash\{x \mid f(x)=0\}$ as an algebraic variety of \mathbb{C}^{n+1} corresponding to the ideal $\langle 1-f Y\rangle \subseteq \mathbb{C}\left[X_{1}, \ldots, X_{n}, Y\right]$.

Definition

The complex torus is $\left(\mathbb{C}^{*}\right)^{n}=\mathbb{C}^{n} \backslash \mathcal{V}\left(X_{1} \cdots X_{n}\right)$ with coordinate ring $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]$.

Toric varieties

Definition

An algebraic variety V containing a torus as dense open subset and such that the torus acts (algebraically) on the variety is called a toric variety.

Character of a torus

Definition

Let T be a torus, a character m of T is a group homomorphism $\chi^{m}: T \rightarrow \mathbb{C}^{*}$.
The set of characters forms a group that we will denote M.

Character of a torus

Definition

Let T be a torus, a character m of T is a group homomorphism $\chi^{m}: T \rightarrow \mathbb{C}^{*}$.
The set of characters forms a group that we will denote M.

Character lattice

Remark

All characters are of the form :

$$
\chi^{m}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{*},\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}
$$

Therefore $M \simeq \mathbb{Z}^{n}$ and we will write $m=\left(a_{1}, \ldots, a_{n}\right)$. The group \mathbb{Z}^{n} is the definition of lattice. Thus M is a lattice (i.e. a free abelian group of finite rank).

Character lattice

Remark

All characters are of the form :

$$
\chi^{m}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{*},\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}
$$

Therefore $M \simeq \mathbb{Z}^{n}$ and we will write $m=\left(a_{1}, \ldots, a_{n}\right)$. The group \mathbb{Z}^{n} is the definition of lattice. Thus M is a lattice (i.e. a free abelian group of finite rank).

The combinatorics theorem

Theorem

Let T be a torus and $\mathcal{A}=\left\{m_{1}, \ldots, m_{s}\right\} \subset M$, consider the map

$$
\phi_{\mathcal{A}}: T \rightarrow \mathbb{C}^{s}, t \mapsto\left(\chi^{m_{1}}(t), \ldots, \chi^{m_{s}}(t)\right)
$$

Then the Zariski closure of the image of $\phi_{\mathcal{A}}$ is a toric variety and all toric varieties arise this way.

We will denote the variety generated this way $Y_{\mathcal{A}}$.

Caracterizing the toric ideals

Corollary

Let T be a torus and $\mathcal{A}=\left\{m_{1}, \ldots, m_{s}\right\} \subset M$, consider the sublattice

$$
L=\left\{u \in \mathbb{Z}^{s} \mid \sum_{i=1}^{s} u_{i} m_{i}=0\right\} .
$$

Then $\mathcal{I}\left(Y_{\mathcal{A}}\right)=\left\langle x^{\alpha}-x^{\beta} \mid \alpha, \beta \in \mathbb{N}^{s}, \alpha-\beta \in L\right\rangle$.

Generate a toric variety with a cone

Process

Let us fix $n \in \mathbb{N}^{*}$, we look at the following steps :
(1) We fix a polyhedral cone σ in \mathbb{R}^{n}.
(2) We look at its dual σ^{v} in \mathbb{R}^{n}
(3) We denote S the set of points of $\sigma^{v} \cap \mathbb{Z}^{n}$
(4) The variety U_{σ} is the variety with coordinate ring

Generate a toric variety with a cone

Process

Let us fix $n \in \mathbb{N}^{*}$, we look at the following steps :
(1) We fix a polyhedral cone σ in \mathbb{R}^{n}.
(2) We look at its dual σ^{\vee} in \mathbb{R}^{n}.
(3) We denote S the set of points of $\sigma^{V} \cap \mathbb{Z}^{n}$
(9) The variety U_{σ} is the variety with coordinate ring

Generate a toric variety with a cone

Process

Let us fix $n \in \mathbb{N}^{*}$, we look at the following steps:
(1) We fix a polyhedral cone σ in \mathbb{R}^{n}.
(2) We look at its dual σ^{\vee} in \mathbb{R}^{n}.
(3) We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^{n}$.
(4) The variety U_{σ} is the variety with coordinate ring

Generate a toric variety with a cone

Process

Let us fix $n \in \mathbb{N}^{*}$, we look at the following steps :
(1) We fix a polyhedral cone σ in \mathbb{R}^{n}.
(2) We look at its dual σ^{\vee} in \mathbb{R}^{n}.
(3) We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^{n}$.
(4) The variety U_{σ} is the variety with coordinate ring $\left\langle x^{s} \mid s \in S\right\rangle \subseteq \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

Main result

Theorem

The variety U_{σ} is a normal toric variety and all normal toric varieties arise this way.

Definition

An algebraic variety V is normal if its coordinate ring $\mathbb{K}[V]$ is normal, ie if an element $v \in \mathbb{K}(V)$ is a solution of a monic polynomial of $\mathbb{K}[V][X]$, then $v \in \mathbb{K}[V]$.

Main result

Theorem

The variety U_{σ} is a normal toric variety and all normal toric varieties arise this way.

Definition

An algebraic variety V is normal if its coordinate ring $\mathbb{K}[V]$ is normal, ie if an element $v \in \mathbb{K}(V)$ is a solution of a monic polynomial of $\mathbb{K}[V][X]$, then $v \in \mathbb{K}[V]$.

Outline

(1) Notions of algebraic geometry
(2) Affine toric varieties
(3) Abstract toric varieties

Abstract varieties

Definition

An abstract variety is the collection of a set of affine varieties $\left(V_{\alpha}\right)$ glued together by isomorphisms on open sets.

Example
The projective plane $\mathbb{P}^{1}(\mathbb{C})$ is the union of $\mathbb{C}=V_{1}$ and $\mathbb{C}=V_{2}$
with the gluing g

Abstract varieties

Definition

An abstract variety is the collection of a set of affine varieties $\left(V_{\alpha}\right)$ glued together by isomorphisms on open sets.

Example

The projective plane $\mathbb{P}^{1}(\mathbb{C})$ is the union of $\mathbb{C}=V_{1}$ and $\mathbb{C}=V_{2}$ with the gluing $g: V_{1} \backslash\{0\} \rightarrow V_{2} \backslash\{0\}, x \mapsto 1 / x$.

Equivalent of cones for abstract varieties

How can we adapt cones to generate abstract toric varieties?

Equivalent of cones for abstract varieties

How can we adapt cones to generate abstract toric varieties?

Fan

Definition

A fan Σ in \mathbb{R}^{n} is a finite collection of cones in \mathbb{R}^{n} which is stable by restriction to faces of cones and such that the intersection of two cones of Σ is the greatest common face of those two cones.

This is the good notion!

Theorem

The variety X_{Σ} generated by the fan Σ is a normal toric variety and all normal toric varieties arise this way.

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ}, then :
(1) There is a bijective correspondence

$$
\{\text { cones } \sigma \in \Sigma\} \longleftrightarrow\left\{T \text { - orbits of } X_{\Sigma}\right\}
$$

(2) The dimension of the orbit corresponding to σ is the codimension of σ.
(3) The affine variety U_{∞} is the union of the orbits of the faces of
((For two cones $\tau, \sigma \in \Sigma, \tau$ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ}, then :
(1) There is a bijective correspondence

$$
\{\text { cones } \sigma \in \Sigma\} \longleftrightarrow\left\{T \text { - orbits of } X_{\Sigma}\right\}
$$

(2) The dimension of the orbit corresponding to σ is the codimension of σ.
(3) The affine variety U_{σ} is the union of the orbits of the faces of
(0) For two cones $\tau, \sigma \in \Sigma, \tau$ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ}, then :
(1) There is a bijective correspondence

$$
\{\text { cones } \sigma \in \Sigma\} \longleftrightarrow\left\{T \text { - orbits of } X_{\Sigma}\right\}
$$

(2) The dimension of the orbit corresponding to σ is the codimension of σ.
(3) The affine variety U_{σ} is the union of the orbits of the faces of σ.
(9) For two cones $\tau, \sigma \in \Sigma, \tau$ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ}, then :
(1) There is a bijective correspondence

$$
\{\text { cones } \sigma \in \Sigma\} \longleftrightarrow\left\{T-\text { orbits of } X_{\Sigma}\right\}
$$

(2) The dimension of the orbit corresponding to σ is the codimension of σ.
(3) The affine variety U_{σ} is the union of the orbits of the faces of σ.
(9) For two cones $\tau, \sigma \in \Sigma, \tau$ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Conclusion

Thank you for your attention! Feel free to ask any question.

(Bibliography on demand.)

