Abstract toric varieties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction to toric varieties

Thomas Saillez

Advisor Špela Špenko

ULB

Thursday the 24th, 2022

Abstract toric varieties

Outline

Notions of algebraic geometry •000 Affine toric varieties

Abstract toric varieties

Outline

2 Affine toric varieties

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Definition

A subset $A \subseteq \mathbb{C}^n$ is an algebraic set if there exists an ideal $I \in \mathbb{C}[X_1, ..., X_n]$ such that

$$A = \{x \in \mathbb{C}^n | \forall P \in I, P(x) = 0\}.$$

The topology of \mathbb{C}^n such that closed sets are algebraic sets is **Zariski topology**.

Definition

An algebraic set V is an **affine algebraic variety** if it is irreducible (there is no pair of nontrivial closed sets covering V).

Definition

A subset $A \subseteq \mathbb{C}^n$ is an algebraic set if there exists an ideal $l \in \mathbb{C}[X_1, ..., X_n]$ such that

$$A = \{x \in \mathbb{C}^n | \forall P \in I, P(x) = 0\}.$$

The topology of \mathbb{C}^n such that closed sets are algebraic sets is **Zariski topology**.

Definition

An algebraic set V is an **affine algebraic variety** if it is irreducible (there is no pair of nontrivial closed sets covering V).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Ideal of an affine variety and coordinate ring

Definition

To an algebraic variety V we can associate an ideal given by :

$$\mathcal{I}(V) := \{ P \in \mathbb{K} | \forall x \in V, P(x) = 0 \}.$$

Definition

To an algebraic variety $V \subseteq \mathbb{C}^n$ we can associate a ring, named **coordinate ring**, given by :

 $\mathbb{C}[V] := \mathbb{C}[X_1, ..., X_n]/\mathcal{I}(V).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Ideal of an affine variety and coordinate ring

Definition

To an algebraic variety V we can associate an ideal given by :

$$\mathcal{I}(V) := \{ P \in \mathbb{K} | \forall x \in V, P(x) = 0 \}.$$

Definition

To an algebraic variety $V \subseteq \mathbb{C}^n$ we can associate a ring, named **coordinate ring**, given by :

$$\mathbb{C}[V] := \mathbb{C}[X_1, ..., X_n]/\mathcal{I}(V).$$

Abstract toric varieties

An exemple

Exemple

The cuspidal curve is the curve defined by the equation $Y^2 = X^3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

The complex torus

Remark

For a given polynomial $f \in \mathbb{C}[X_1, ..., X_n]$, we can see the open set $U = \mathbb{C}^n \setminus \{x | f(x) = 0\}$ as an algebraic variety of \mathbb{C}^{n+1} corresponding to the ideal $\langle 1 - fY \rangle \subseteq \mathbb{C}[X_1, ..., X_n, Y]$.

Definition

The complex **torus** is $(\mathbb{C}^*)^n = \mathbb{C}^n \setminus \mathcal{V}(X_1 \cdots X_n)$ with coordinate ring $\mathbb{C}[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$.

Abstract toric varieties

The complex torus

Remark

For a given polynomial $f \in \mathbb{C}[X_1, ..., X_n]$, we can see the open set $U = \mathbb{C}^n \setminus \{x | f(x) = 0\}$ as an algebraic variety of \mathbb{C}^{n+1} corresponding to the ideal $\langle 1 - fY \rangle \subseteq \mathbb{C}[X_1, ..., X_n, Y]$.

Definition

The complex **torus** is $(\mathbb{C}^*)^n = \mathbb{C}^n \setminus \mathcal{V}(X_1 \cdots X_n)$ with coordinate ring $\mathbb{C}[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$.

Toric varieties

Definition

An algebraic variety V containing a torus as dense open subset and such that the torus acts (algebraically) on the variety is called a **toric variety**.

Notions of algebraic geometry 0000 Affine toric varieties

Abstract toric varieties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Character of a torus

Definition

Let T be a torus, a character m of T is a group homomorphism $\chi^m : T \to \mathbb{C}^*$. The set of characters forms a group that we will denote M. Notions of algebraic geometry 0000 Affine toric varieties

Abstract toric varieties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Character of a torus

Definition

Let T be a torus, a **character** m of T is a group homomorphism $\chi^m : T \to \mathbb{C}^*$. The set of characters forms a group that we will denote M.

Abstract toric varieties

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Character lattice

Remark

All characters are of the form :

$$\chi^m: (\mathbb{C}^*)^n \to \mathbb{C}^*, (t_1, \ldots, t_n) \mapsto t_1^{a_1} \ldots t_n^{a_n}.$$

Therefore $M \simeq \mathbb{Z}^n$ and we will write $m = (a_1, \ldots, a_n)$. The group \mathbb{Z}^n is the definition of **lattice**. Thus M is a lattice (i.e. a free abelian group of finite rank).

Character lattice

Remark

All characters are of the form :

$$\chi^m: (\mathbb{C}^*)^n \to \mathbb{C}^*, (t_1, \ldots, t_n) \mapsto t_1^{a_1} \ldots t_n^{a_n}.$$

Therefore $M \simeq \mathbb{Z}^n$ and we will write $m = (a_1, \ldots, a_n)$. The group \mathbb{Z}^n is the definition of **lattice**. Thus M is a lattice (i.e. a free abelian group of finite rank).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

The combinatorics theorem

Theorem

Let T be a torus and $\mathcal{A} = \{m_1, \ldots, m_s\} \subset M$, consider the map

$$\phi_{\mathcal{A}}: T \to \mathbb{C}^{s}, t \mapsto (\chi^{m_{1}}(t), \dots, \chi^{m_{s}}(t)).$$

Then the Zariski closure of the image of ϕ_A is a toric variety and all toric varieties arise this way.

We will denote the variety generated this way $Y_{\mathcal{A}}$.

Abstract toric varieties

Caracterizing the toric ideals

Corollary

Let T be a torus and $\mathcal{A} = \{m_1, \ldots, m_s\} \subset M$, consider the sublattice

$$L = \left\{ u \in \mathbb{Z}^s | \sum_{i=1}^s u_i m_i = 0 \right\}.$$

Then $\mathcal{I}(Y_{\mathcal{A}}) = \langle x^{\alpha} - x^{\beta} | \alpha, \beta \in \mathbb{N}^{s}, \alpha - \beta \in L \rangle.$

Generate a toric variety with a cone

Process

- **1** We fix a polyhedral cone σ in \mathbb{R}^n .
- 2 We look at its dual σ^{\vee} in \mathbb{R}^n .
- **3** We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^n$.
- The variety U_σ is the variety with coordinate ring ⟨x^s|s ∈ S⟩ ⊆ C[X₁,...,X_n].

Generate a toric variety with a cone

Process

- **1** We fix a polyhedral cone σ in \mathbb{R}^n .
- 2 We look at its dual σ^{\vee} in \mathbb{R}^n .
- **③** We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^n$.
- The variety U_σ is the variety with coordinate ring ⟨x^s|s ∈ S⟩ ⊆ C[X₁,...,X_n].

Generate a toric variety with a cone

Process

- **1** We fix a polyhedral cone σ in \mathbb{R}^n .
- 2 We look at its dual σ^{\vee} in \mathbb{R}^n .
- **③** We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^n$.
- The variety U_σ is the variety with coordinate ring ⟨x^s|s ∈ S⟩ ⊆ C[X₁,...,X_n].

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Generate a toric variety with a cone

Process

- **1** We fix a polyhedral cone σ in \mathbb{R}^n .
- 2 We look at its dual σ^{\vee} in \mathbb{R}^n .
- **③** We denote S the set of points of $\sigma^{\vee} \cap \mathbb{Z}^n$.
- The variety U_{σ} is the variety with coordinate ring $\langle x^{s} | s \in S \rangle \subseteq \mathbb{C}[X_{1}, ..., X_{n}].$

Main result

Theorem

The variety U_{σ} is a **normal** toric variety and all normal toric varieties arise this way.

Definition

An algebraic variety V is **normal** if its coordinate ring $\mathbb{K}[V]$ is normal, ie if an element $v \in \mathbb{K}(V)$ is a solution of a monic polynomial of $\mathbb{K}[V][X]$, then $v \in \mathbb{K}[V]$.

・ロト ・ 西ト ・ ヨト ・ 日下 ・ 今々ぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Main result

Theorem

The variety U_{σ} is a **normal** toric variety and all normal toric varieties arise this way.

Definition

An algebraic variety V is **normal** if its coordinate ring $\mathbb{K}[V]$ is normal, ie if an element $v \in \mathbb{K}(V)$ is a solution of a monic polynomial of $\mathbb{K}[V][X]$, then $v \in \mathbb{K}[V]$.

Abstract toric varieties •000000

Outline

2 Affine toric varieties

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Abstract toric varieties

Abstract varieties

Definition

An abstract variety is the collection of a set of affine varieties (V_{α}) glued together by isomorphisms on open sets.

Example

The projective plane $\mathbb{P}^1(\mathbb{C})$ is the union of $\mathbb{C} = V_1$ and $\mathbb{C} = V_2$ with the gluing $g : V_1 \setminus \{0\} \to V_2 \setminus \{0\}, x \mapsto 1/x$.

Abstract toric varieties

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Abstract varieties

Definition

An abstract variety is the collection of a set of affine varieties (V_{α}) glued together by isomorphisms on open sets.

Example

The projective plane $\mathbb{P}^1(\mathbb{C})$ is the union of $\mathbb{C} = V_1$ and $\mathbb{C} = V_2$ with the gluing $g : V_1 \setminus \{0\} \to V_2 \setminus \{0\}, x \mapsto 1/x$.

Abstract toric varieties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Equivalent of cones for abstract varieties

How can we adapt cones to generate abstract toric varieties?

Abstract toric varieties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Equivalent of cones for abstract varieties

How can we adapt cones to generate abstract toric varieties?

Definition

A fan Σ in \mathbb{R}^n is a finite collection of cones in \mathbb{R}^n which is stable by restriction to faces of cones and such that the intersection of two cones of Σ is the greatest common face of those two cones.

Abstract toric varieties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is the good notion !

Theorem

The variety X_{Σ} generated by the fan Σ is a normal toric variety and all normal toric varieties arise this way.

Abstract toric varieties

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ} , then :

There is a bijective correspondence

- 2 The dimension of the orbit corresponding to σ is the codimension of σ .
- (a) The affine variety U_{σ} is the union of the orbits of the faces of σ .
- O For two cones τ, σ ∈ Σ, τ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ} , then :

There is a bijective correspondence

- **2** The dimension of the orbit corresponding to σ is the codimension of σ .
- (a) The affine variety U_{σ} is the union of the orbits of the faces of σ .
- O For two cones τ, σ ∈ Σ, τ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ} , then :

There is a bijective correspondence

- **2** The dimension of the orbit corresponding to σ is the codimension of σ .
- 3 The affine variety U_{σ} is the union of the orbits of the faces of σ .
- O For two cones τ, σ ∈ Σ, τ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Orbit-cone correspondence

Theorem

Let Σ be a fan and X_{Σ} the corresponding toric variety. Let us denote T the torus of X_{Σ} , then :

There is a bijective correspondence

- **2** The dimension of the orbit corresponding to σ is the codimension of σ .
- **3** The affine variety U_{σ} is the union of the orbits of the faces of σ .
- For two cones τ, σ ∈ Σ, τ is a face of σ if and only if the orbit corresponding to σ is a subset of the closure of the orbit corresponding to τ.

Abstract toric varieties

Conclusion

Thank you for your attention ! Feel free to ask any question.

(Bibliography on demand.)