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STOP DOING STATISTICS
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Standard hypotheses in classical statistics

Many classical methods are built upon standard hypotheses, such as:

The data is normally distributed

All observations are independent and identically distributed (iid)

All parameters of interest can be properly identified

Violating one or multiple of those hypotheses would then often invalidate the
results of the statistical analysis at hand.

In real life however, things might not appear so well behaved...

V. Meurice (ULB) Non-standard Hypotheses 2023 5 / 34



Real life be like

Statistician finding out his data is not normally distributed be like:
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Relaxed hypotheses in classical statistics

A lot of theory has now been developed based on weaker hypotheses, such as:

The data is distributed (a)symmetrically around the mean

Observations are weakly correlated

Individuals have the same mean but possibly different variances
(heteroskedasticity)

Practitioners are (finally!) beginning to recognise those imperfect situations, and
to use more specific methods accordingly.

The field of directional statistics being newer and a lot more niche, standard
assumptions still prevail considerably.
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Directional statistics

In directional statistics, we consider realisations of p-dimensional random variables
whose values lie on p − 1-(hyper)spheres; i.e., any variable X takes values in

Sp−1 := {x ∈ Rp : ||x || = 1}.
The case p = 2 (circular data) is usually treated separately.

Figure: Uniformly distributed data on a 2-sphere.
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Mean direction

The expected value of a spherical random variable usually does not lie on the
sphere, but inside of it.

One is therefore often more interested in doing inference on the mean direction,

that is, the normed expectation E[X ]
||E[X ]|| , often called θ.

We then focus on how the data is distributed around that pole, with questions
such as:

How concentrated is it around the mean?

Is the spread symmetrical in some way?
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The Fisher-von Mises-Langevin (FvML) distribution)

The spherical equivalent of the Gaussian distribution is the Fisher-von
Mises-Langevin distribution.

A variable X ∼ FvML(θ, κ, p) has density

f (x) = Cp,κ exp(κx ′θ)

where Cp,κ is a normalisation constant (this depends on the measure used,
Lebesgue or sphere surface area).

θ is a location parameter (the mean direction), and κ is a concentration parameter
around θ. Note that κ = 0 induces a uniform distribution on the sphere.
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Rotational symmetry of the FvML distribution

The FvML density only depends on x ′θ, that is, on the angle formed with the
mean direction θ. It is therefore rotationally symmetric around θ.

Figure: FvML density with θ = (1, 0, 0).
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Standard hypotheses

Similarly as for general multivariate data, one often imposes quite strict
assumptions when dealing with directional data. Some of them are the following:

Everything is i.i.d FvML.

At the very least, the data follows a rotationally symmetric distribution
around its mean.

The concentration around θ is strong.

All parameters can be properly identified, and consistently estimated
asymptotically.
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Real life be like

Statistician finding out his data is not FvML-distributed be like:
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Examples given

In the sequel, we will focus on two hypotheses that we would want to relax:

Rotational symmetry

Easy identification of θ
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Rotationally symmetric distributions I

While ideally, one would always prefer to deal with FvML data, this may be too
strict of an assumption to make.

It is useful to define the set of rotationally symmetric distributions, as the one
with densities of the form

f (x) = cp,κ,f f (κx ′θ),

with location parameter θ ∈ Sp−1 and concentration parameter κ ≥ 0, where
cp,κ,f is a normalisation constant and where f : R→ R+

0 is (strictly) monotone
increasing.

The distribution is then invariant to all orthogonal transformations around θ.
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Rotationally symmetric distributions II

Considering rotationally symmetric densities is a nice way to avoid focusing on
FvML, and generally works well, especially in an asymptotic setting.

That being said, real-life phenomena have no reason to be symmetric around their
mean...

There are a lot of ways to relax such an hypothesis, and of them is to define
so-called E-symmetric distributions.

The idea is to transform random vectors generated by a rotationally-symmetric
distribution, by stretching the ambient space along the axes of a chosen basis, and
then norming the resulting vector.
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E-symmetry
Scealy & Wood (2019, 2020)

Definition: E-symmetry

Suppose the random vector y ∈ Sp−1 follows a rotationally-symmetric distribution
Gθ centered around θ ∈ Sp−1, with density g(y), where θ is the first vector of an
orthonormal basis {θ,γ2, . . . ,γp}.
Let Q = (θ,γ2, . . . ,γp) and Λ = diag(a2

1, . . . , a
2
p), with a1 > 0,

a2 ≥ a3 ≥ . . . ≥ ap > 0 and
∏p

j=2 aj = 1.
Then the random vector x given by

x :=
Ty
||Ty ||

where T = QΛ
1
2 Q ′, follows an E-symmetric distribution.

Note that in the case of the canonical basis, we would get

x :=
(a1y1, a2y2, . . . , apyp)√∑p

j=1(ajyj)2
.

V. Meurice (ULB) Non-standard Hypotheses 2023 20 / 34



E-symmetry
Scealy & Wood (2019, 2020)

Theorem: E-symmetric density

The E-symmetric distribution defined in the previous slide possesses the following
probability density:

h(x) = a−1
1

[
x ′Σ−1x

]− p−1
2 × g

(
x ′θ(det Σ)−

1
2

[
x ′Σ−1x

]− 1
2

)
= a−1

1

(x ′θ
a1

)2

+

p∑
j=2

(
x ′γj

aj

)2
−

p−1
2

× g

x ′θ
a1

(x ′θ
a1

)2

+

p∑
j=2

(
x ′γj

aj

)2
− 1

2



where Σ = QΛQ ′.
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E-symmetry
Scealy & Wood (2019, 2020)

Example # 1: When g(y) is the uniform density on the sphere, h(x) becomes
the angular central gaussian density (see Tyler (1987)).

Below, 1000 realisations from the uniform distribution (left), then transformed

(right) with T =

0 0 1
0 1 0
1 0 0

1 0 0
0 2 0
0 0 1

2

0 0 1
0 1 0
1 0 0

.

y 7→ Ty
||Ty ||

with y ∼ Unif
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Scaled von-Mises Fisher distribution
Scealy & Wood (2019, 2020)

Example # 2: When going from the famous Fisher von-Mises Langevin
distribution and stretching it, we end up with what Scealy and Woods call the
Scaled von-Mises Fisher distribution, with density

cp(κ)× (det Σ)−
1
2

[
x ′Σ−1x

]− p−1
2 × exp

(
κx ′θ(det Σ)−

1
2

[
x ′Σ−1x

]− 1
2

)
,

where cp(κ) is a normalising constant. The example below uses the same T
matrix as the previous one.

y 7→ Ty
||Ty ||

with y ∼ FvML
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Future developments

The point of researching this topic is to design statistical procedures that remain
valid under E-symmetry.

Estimating θ,γ2, . . . ,γp does not seem to be a problem. However,

Maximum likelihood estimation of both κ and a1 at the same time is
impossible. It is also still unclear as to what their relationship is.

Estimating a2, . . . , ap seems very complicated.

Testing procedures made for rotationally symmetric distributions appear to
suffer from elliptical distortions of this kind.
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Intuition

Finding θ is easiest when the concentration around it is strong.

Additionally, estimating it should become easier when sample size n grows.

But what if κ is very small, even relatively to the sample size? Can we still
estimate θ consistently? How small is too small for κ?
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Setting
Paindaveine & Verdebout (2017)

First, we assume the data is rotationally symmetric (sadly).

We consider the asymptotic setting where the sample size n→∞ grows to
infinity, and make sure κn depends on n.

Specifically, we let κn =
√
pηnξ + o(ηn) as n→∞.

We put aside the presence of p and ξ, and focus on ηn.

ηn is the rate at which κn can converge to 0, meaning the distribution will possibly
be close to uniformity for large n. Do things break for some specific value of ηn?
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Spoiler: Central Limit Theorem

Is there any convergence rate that plays a major role in asymptotic statistics? I
wonder...

Central Limit Theorem

For X1, . . . ,Xn i.i.d. (any distribution) with mean E[X1] =: µ, there exists Σ such
that √

n
(
X̄ − µ

) d−→ Np(0,Σ)

as n→∞.

Clearly, the rate
√
n (or in the case of κn, 1√

n
) is very important.
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Regimes
Paindaveine & Verdebout (2017)

It is now useful to consider different regimes for ηn, for which we can expect
different results:

(i) ηn = 1

(ii) ηn = o(1) with
√
nηn →∞

(iii) ηn = 1√
n

(iv) ηn = o(1) with
√
nηn → 0

What does inference on θ look like in each of these regimes?
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Estimating θ
Paindaveine & Verdebout (2017)

How does the usual estimator of θ, that is,

θ̂n :=
X̄
||X̄ ||

,

react when in a neighbourhood of uniformity?

Theorem: convergence of θ̂n

In regimes (i) and (ii), θ̂n converges in probability to θ.

In regime (iii), θ̂n
d−→ Z
||Z || , with Z ∼ Np(θ, Ip).

In regime (iv), θ̂n
d−→ Unif(Sp−1), the uniform distribution on the sphere.
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Consequences I

On top of struggling for point estimation, θ̂n is obviously used in many other
statistical procedures, such as hypotheses tests.

For example, consider the problem of testing

H0 : θ = θ0 against H1 : θ 6= θ0

for some θ0 ∈ Sp−1.
Paindaveine and Verdebout (2017) have shown that the usual Watson score test
remained valid under the null, but severely underperformed power-wise (i.e. the
test does not reject as often as expected when it needs to) in regimes (iii) and (iv).

V. Meurice (ULB) Non-standard Hypotheses 2023 31 / 34



Consequences II

This kind of issue is bound to arise in all sorts of problems involving the
estimation of θ.

We are currently researching how robust current methods are to this issue, and
how we can improve them if needed.
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Conclusions

Many statistical tools have been built for somewhat strict standard hypotheses.

Real-life random processes are often more complex than those hypotheses, and
practitioners need be aware of it.

Similarily as in other sub-fields, a lot of research is still needed for directional
statistics methods that work well in less-than-ideal situations.
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