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Queen Dido and the city of Carthage

From a lecture delivered by Lord Kelvin to the Royal Institution, 1893:
The city of Carthage
B

If the land is all of equal value the general
solution of the problem shows that her line of
ox-hide should be laid down in a circle. It
shows also that if the sea is to be part of the

boundary, starting, let us say, southward from any

given point, A, of the coast, the inland bounding
line must at its far end cut the coast line
perpendicularly. Here, then, to complete our
solution, we have a very curious and interesting,

but not at all casy, geometrical question to
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The mathematics of soap films

Video

Experiment

» thickness of soap to maximise, area of
frame /\x\/g Soap to minimise

» the hole solves isoperimetric problem

soap water
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Isoperimetric inequality

Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

2
A<t
T 4r
Equality happens only for round circles.

In space-form of curvature K = —1,0, +1,

A7 A < 1?2 4+ KA?

Soap films minimise area

Minimal surfaces

= surfaces that locally minimise area
= vanishing mean curvature
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Minimal surfaces
> research inititated by Lagrange (1762) who wrote down the equation
and asked the Plateau problem.

> first examples (other than the plane) found by Meusnier (1776): the
catenoid and helicoid

» Weierstrass—Enneper (1863) generated minimal surfaces by
holomorphic/meromorphic functions.

» In 1930, Douglas and Rado solved the Plateau problem.

Catenoid Not catenoid
Catenary
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Ax;=0 onX

» Barrier (Maximum principle): Minimal surfaces cannot kiss a
hyperplane — No closed minimal surface.

» Monotonicity theorem
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Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in R” satisfy A < %.
» Carleman (1921): minimal discs

» Reid (1959), Hsiung (1961): minimal surfaces with connected
boundary

Osserman—-Schiffer (1975), Feinberg (1977): minimal annuli
Li-Schoen—Yau (1984): weakly connected boundary

Choe (1990): radially connected boundary

Brendle (2020): codimension at most 2

vvyyvyy



Minimal surfaces in H"

The hyperbolic space H"

» simply-connected, constant sectional curvature -1



Minimal surfaces in H"

The hyperbolic space H"

» simply-connected, constant sectional curvature -1

» has totally geodesic copies of H" !



Minimal surfaces in H"

The hyperbolic space H"

» simply-connected, constant sectional curvature -1

» has totally geodesic copies of H" !

Escher’'s Heaven and Hell
(Circle Limit 1V)

Figure: M. C. Escher
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Poincaré ball model

In B", r: Euclidean distance to centre,

4
8H = nguclidean

Minimal surfaces
» Barrier: Minimal surfaces cannot kiss copies of H"~! hyperplane
— No closed minimal surfaces in H"
» Asymptotic Plateau problem solved by M. Anderson (1982):Given an
immersed curve 7 of S"1 there is an area-minimising minimal
surface of H" that is asymptotic to .
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The half-space model

R>o(x) X Rf};}_”yn_i) with the metric

_ BEuclidean

8H

-2
Facts
» half spheres and vertical planes are copies of H" !
» horizontal planes are horocycles/horospheres
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Hyperboloid model and Minkowskian coordinates
» Minkowskian space R™! with metric g = d¢2 + ... d¢2 — d&3.
» Unit hyperboloid H: & =1+& 4 ... + &2

Coordinates  Geometric object  Function Level sets
Time interior point & = coshd circles
Space copy of H" ! & =sinhd hypercycles
Null boundary point  § = 1(=expB) horocycles

Figure: Escher’s Fish (Circle Limit II1)
[m] [l = =




Graham—-Witten's renormalised area

> Any complete minimal surface ¥ of H" has infinite area (recall: no
closed minimal surface).



Graham—-Witten's renormalised area

> Any complete minimal surface ¥ of H" has infinite area (recall: no
closed minimal surface).Goal: get a finite number out of it.



Graham—-Witten's renormalised area

> Any complete minimal surface ¥ of H" has infinite area (recall: no
closed minimal surface).Goal: get a finite number out of it.

» Fix a half space coordinate x. Let

Ac = Area(Z N {x > €})



Graham—-Witten's renormalised area

> Any complete minimal surface ¥ of H" has infinite area (recall: no
closed minimal surface).Goal: get a finite number out of it.

» Fix a half space coordinate x. Let

Ac = Area(Z N {x > €})

Theorem (Graham—Witten '99)
If X is minimal then .
Ac = -+ Agr + O(¢)

= —
€

where L is the Euclidean length of O%.



Graham—-Witten's renormalised area

> Any complete minimal surface ¥ of H" has infinite area (recall: no
closed minimal surface).Goal: get a finite number out of it.

» Fix a half space coordinate x. Let

Ac = Area(Z N {x > €})

Theorem (Graham—Witten '99)

If ¥ is minimal then

L
€= + Agr + O(¢)
where L is the Euclidean length of O%.

Moreover, Ag is independent of the choice of the boundary defining
function x.

A
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Isoperimetric inequality

Theorem (Bernstein, T.)
Let ¥ be a minimal surface of H" bounded by a curve v C S"~1.Then
AR(Z) + sup [l <0.
round g

Equality happens only for totally geodesic copies of H?.

Remark:

interior points <— time coordinates <— round metrics

boundary points <— null coordinates +— flat metrics

copies of H"™! +— space coordinates +— doubled hyperbolic metrics
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Isoperimetric inequalities

Theorem (T.)
1. Ifé&g>a>1onX then

1 1
Ar(Z) + §|’Y|ga <3 + a) <0
2. If¢& > a>0o0nX then

a

1 1
AR(E) + 3l (2= 3) 0
3. If§;,>a>0onX then

1
AR(E) + 511ga <0

Here &, &1, & be Minkowskian coordinates.
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Under the hood: Monotonicity theorems

Theorem (T.)
Each Minkowskian coordinate £ gives a monotonicity theorem.

» Those are statements about the area of the minimal surface between
level sets of &.

» More general: warped spaces, manifolds with curvature bounded
from above.
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Counting minimal surfaces of H"” bounded by a knot/link

» Tomi-Tromba ('78): solution of the embedded Plateau problem
> White ('87) counting minimal surfaces of R”, modulo properness
» Alexakis—Mazzeo ('10): counting embedded minimal surfaces of H3

» Fine ('21): counting branched minimally immersed surfaces of H*

Theorem (T.)

Let L = Ly Ui Ly be a separated union of 2 links of S3.Can rearrange L so
that there is no connected minimal surfaces of H* filling it.
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Surfaces filling Hopf links

These annuli are surfaces of 06|
revolution.The rotation here is by
changing the 2 complex coordinates 041
of H* = B* C C? by an opposite

phase.

Theorem (T.)

There are minimal annuli of H* filling the Hopf
links of S3.
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Figure: the new "catenary"
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