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Queen Dido and the city of Carthage
From a lecture delivered by Lord Kelvin to the Royal Institution, 1893:

The city of Carthage

Queen Dido
▶ Fleed the Phoenician city of

Tyre (Lebanon) to North Africa
▶ grant from a native chief of as

much land as she could enclose
with an ox-hide

▶ cut the hide into long strip,
used the coastline, enclosed a
circle

Question: Maximise the area
enclosed by a given perimeter
−→ Isoperimetric problem
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Isoperimetric inequality

Theorem
In the Euclidean plane, a curve of length L encloses an area A at most

A ≤ L2

4π
.

Equality happens only for round circles.
In space-form of curvature K = −1, 0,+1,

4πA ≤ L2 + KA2

Soap films minimise area
Minimal surfaces
= surfaces that locally minimise area
= vanishing mean curvature
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Minimal surfaces
▶ research inititated by Lagrange (1762) who wrote down the equation

and asked the Plateau problem.

▶ first examples (other than the plane) found by Meusnier (1776): the
catenoid and helicoid

▶ Weierstrass–Enneper (1863) generated minimal surfaces by
holomorphic/meromorphic functions.

▶ In 1930, Douglas and Rado solved the Plateau problem.
▶ . . .

Catenoid
Catenary

Not catenoid
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Properties of minimal surfaces

▶ Coordinates restrict to harmonic functions, i.e.

∆xi = 0 on Σ

▶ Barrier (Maximum principle): Minimal surfaces cannot kiss a
hyperplane −→ No closed minimal surface.

▶ Monotonicity theorem
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Isoperimetric inequality for minimal surfaces

Guess: Area and perimeter of a minimal surface in Rn satisfy A ≤ L2

4π .

▶ Carleman (1921): minimal discs
▶ Reid (1959), Hsiung (1961): minimal surfaces with connected

boundary
▶ Osserman–Schiffer (1975), Feinberg (1977): minimal annuli
▶ Li–Schoen–Yau (1984): weakly connected boundary
▶ Choe (1990): radially connected boundary
▶ Brendle (2020): codimension at most 2
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Minimal surfaces in Hn

The hyperbolic space Hn

▶ simply-connected, constant sectional curvature -1

▶ has totally geodesic copies of Hn−1

Escher’s Heaven and Hell
(Circle Limit IV)

Figure: M. C. Escher
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Poincaré ball model

In Bn, r : Euclidean distance to centre,

gH =
4

(1− r2)2
gEuclidean

Minimal surfaces
▶ Barrier: Minimal surfaces cannot kiss copies of Hn−1 hyperplane
−→ No closed minimal surfaces in Hn

▶ Asymptotic Plateau problem solved by M. Anderson (1982):Given an
immersed curve γ of Sn−1,there is an area-minimising minimal
surface of Hn that is asymptotic to γ.
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The half-space model

R>0(x) × Rn−1
(y1,...yn−1)

with the metric

gH =
gEuclidean

x2

Facts
▶ half spheres and vertical planes are copies of Hn−1

▶ horizontal planes are horocycles/horospheres
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Hyperboloid model and Minkowskian coordinates
▶ Minkowskian space Rn,1 with metric g = dξ2

1 + . . . dξ2
n − dξ2

0 .

▶ Unit hyperboloid H : ξ2
0 = 1 + ξ2

1 + · · ·+ ξ2
n

Coordinates Geometric object Function Level sets
Time interior point ξ0 = cosh d circles
Space copy of Hn−1 ξ1 = sinh d hypercycles
Null boundary point ξl =

1
x (= expβ) horocycles

Figure: Escher’s Fish (Circle Limit III)
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Graham–Witten’s renormalised area

▶ Any complete minimal surface Σ of Hn has infinite area (recall: no
closed minimal surface).

Goal: get a finite number out of it.
▶ Fix a half space coordinate x . Let

Aϵ = Area(Σ ∩ {x ≥ ϵ})

Theorem (Graham–Witten ’99)
If Σ is minimal then

Aϵ =
L

ϵ
+AR + O(ϵ)

where L is the Euclidean length of ∂Σ.
Moreover, AR is independent of the choice of the boundary defining
function x .
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Isoperimetric inequality

Theorem (Bernstein, T.)
Let Σ be a minimal surface of Hn bounded by a curve γ ⊂ Sn−1.

Then

AR(Σ) + sup
round g

|γ|g ≤ 0.

Equality happens only for totally geodesic copies of H2.
Remark:
interior points ←→ time coordinates ←→ round metrics
boundary points ←→ null coordinates ←→ flat metrics
copies of Hn−1 ←→ space coordinates ←→ doubled hyperbolic metrics
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Isoperimetric inequalities

Theorem (T.)
1. If ξ0 ≥ a ≥ 1 on Σ then

AR(Σ) +
1
2
|γ|g0

(
a+

1
a

)
≤ 0 (1)

2. If ξ1 ≥ a > 0 on Σ then

AR(Σ) +
1
2
|γ|g1

(
a− 1

a

)
≤ 0 (2)

3. If ξl ≥ a > 0 on Σ then

AR(Σ) +
1
2
|γ|gl a ≤ 0 (3)

Here ξ0, ξ1, ξl be Minkowskian coordinates.
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Under the hood: Monotonicity theorems

Theorem (T.)
Each Minkowskian coordinate ξ gives a monotonicity theorem.

▶ Those are statements about the area of the minimal surface between
level sets of ξ.

▶ More general: warped spaces, manifolds with curvature bounded
from above.



Under the hood: Monotonicity theorems

Theorem (T.)
Each Minkowskian coordinate ξ gives a monotonicity theorem.

▶ Those are statements about the area of the minimal surface between
level sets of ξ.

▶ More general: warped spaces, manifolds with curvature bounded
from above.



Under the hood: Monotonicity theorems

Theorem (T.)
Each Minkowskian coordinate ξ gives a monotonicity theorem.

▶ Those are statements about the area of the minimal surface between
level sets of ξ.

▶ More general: warped spaces, manifolds with curvature bounded
from above.



Under the hood: Monotonicity theorems

Theorem (T.)
Each Minkowskian coordinate ξ gives a monotonicity theorem.

▶ Those are statements about the area of the minimal surface between
level sets of ξ.

▶ More general: warped spaces, manifolds with curvature bounded
from above.



Counting minimal surfaces of Hn bounded by a knot/link

▶ Tomi–Tromba (’78): solution of the embedded Plateau problem

▶ White (’87) counting minimal surfaces of Rn, modulo properness
▶ Alexakis–Mazzeo (’10): counting embedded minimal surfaces of H3

▶ Fine (’21): counting branched minimally immersed surfaces of H4

Theorem (T.)
Let L = L1 ⊔ L2 be a separated union of 2 links of S3.Can rearrange L so
that there is no connected minimal surfaces of H4 filling it.
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that there is no connected minimal surfaces of H4 filling it.
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